Читаем Век генетики: эволюция идей и понятий полностью

1. Гель-электрофорез нуклеиновых кислот. В геле фрагменты молекул ДНК и РНК движутся тем быстрее, чем они меньше. Подбирая условия, можно разделять олигонуклеотиды, отличающиеся по длине всего на один нуклеотид.

2. Расщепление ДНК рестриктазами. В 1970 г. В. Арбер из Швейцарии и X. Смит из США открыли ферменты, с помощью которых бактерии расщепляют попавшую в них чужеродную ДНК — рестриктазы. Рестриктазы обычно узнают короткие последовательности — палиндромы длиной 4–6 оснований. Обрабатывая нить ДНК разными рестриктазами, "нарезают" ее на отдельные фрагменты, которые уже можно анализировать и сравнивать, идентичны ли они у особей разных генотипов.

3. Синтез ДНК по матрице РНК. В 1972 г. Говард Темин и Дэвид Балтимор (США) открыли обратную транскриптазу, или ревертазу, фермент, осуществляющий синтез ДНК по матрице РНК. С помощью ревертазы, выделив из клетки или ткани определенную РНК, можно синтезировать ее ДНК — копию, которая должна соответствовать структуре данного гена.

4. Молекулярное клонирование или генная инженерия. Метод позволяет встраивать любой отрезок ДНК в бактериальную плазмиду и получать рекомбинантную ДНК. Этой плазмидой затем заражают бактерию-хозяина. Метод был разработан в 1972 микробиологом Полем Бергом (США), удостоенным Нобелевской премии.

5. Ф. Сенгер и М. Гилберт разработали методы чтения ДНК последовательностей в отдельных фрагментах, позволяющие за несколько часов "читать" последовательности длиной в тысячи нуклеотидов.

6. Полимеразная цепная реакция — метод, разработанный в конце 80-х годов, позволяющий тысячекратно умножать определенный отрезок ДНК, взятый в минимальном количестве из любой ткани (слюна, ткани музейного экспоната и т. д.). Метод оказался применим для анализа ДНК даже музейных препаратов, например, мозга мумии 7000–летней давности; он пригоден для зафиксированных в формалине и парафине образцов.

Набор этих методов сделал возможным выделение и анализ структуры и функции любого желаемого гена.

3.3. К истории открытия мобильных элементов

Генезис открытия мобильных генетических элементов (МГЭ), изменивших лик современной генетики, необычайно поучителен с точки зрения судьбы научных идей и истории науки. Здесь как нельзя лучше видна справедливость глубокого замечания А. А. Любищева (1975, 2000), что прошлое науки это не кладбище гипотез, а собрание недостроенных архитектурных ансамблей, прерванных по дерзости замысла или недостатку средств. С другой стороны, история этого открытия показывает, что многие идеи и факты существуют десятилетиями, будучи на периферии доминирующей доктрины (парадигмы) и рассматриваясь в ней как курьез или исключение. А потом они становятся центральными, и становится малопонятным, почему на них не обращали внимания.

Основные факты и интеллектуальный контур (то что называется в работах по истории науки framework), приведшие к открытию мобильных элементов, были получены в разных областях генетики. Лишь в конце 70-х годов они соединились анастомозами и привели к единой концепции. Этими направлениями были:

1. Анализ свойств высокомутабильных или нестабильных генов у растений и дрозофилы (Emerson, 1914; Demerec, 1926–1940).

2. Исследования Б. МакКлинток по цитогенетике нестабильности у кукурузы и выдвинутая ею гипотеза о контролирующих подвижных элементах (McClintock, 1951–1965).

3. Обнаружение в 1968–1972 гг. нового класса инсерционных мутаций у бактерий, вызванного внедрением чужеродного сегмента ДНК длиной в несколько сотен оснований (Starlinger, 1984; Saedler, Starlinger, 1991).

4. Одновременное открытие двумя группами исследователей в СССР и в США в 1977 г. мобильных генов у дрозофилы D. melanogaster (сводка: Хесин, 1984).

5. Генетические доказательства инсерционной природы нестабильных мутаций в лабораторных линиях дрозофилы (Green М. М., 1967, 1969) и нестабильности аллелей, выделенных из природных популяций в период вспышки мутабильности (Golubovsky, Ivanov, Green, 1977; Golubovsky, 1980).

3.3.1. Первые попытки анализа нестабильных генов (1914–1941)

Само представление о существовании особого нестабильного состояния наследственных факторов было введено в науку Гуго де Фризом в 1901 г. Но еще до 1900 г., в 1896 г., он стал изучать нестабильность у львиного зева Antirrhinum majus, приводящую к мозаичной окраске цветка. Спустя более 90 лет был выделен мобильный элемент Тат, отвечающий за подобный мозаицизм у львиного зева Интерес к мозаицизму у кукурузы во многом связан с чувством красоты у индейцев. Им нравилась мозаичная окраска зерна, и они специально выращивали такие разновидности, тем самым, как оказалось, поддерживали линии с мобильными элементами (Федорофф, 1984).

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука