Читаем Великие цивилизации Междуречья. Древняя Месопотамия: Царства Шумер, Аккад, Вавилония и Ассирия. 2700–100 гг. до н. э. полностью

Задача № 1

Я нашел камень, но не взвесил его. Затем я добавил одну седьмую и одну одиннадцатую. Я взвесил – одна мана. Каким был изначальный вес камня?

Вес камня составлял одну ману, восемь шекелей и 221/2 «линии».


Задача № 2

Если кто-то спросит у тебя следующее: я выкопал столько же, сколько составляет сторона квадрата, который я сделал, и я вычел один мусару (603) и половину размера земли. Свое основание (поверхность земли) я сделал квадратом. Как глубоко я копал?

Ты в своих действиях оперируешь числом 12. Возьми обратную дробь от 12 и умножь на 1,30,0,0, что есть твой размер. Ты получишь 7,30,0. Каков кубический корень от 7,30,0? Тридцать – это кубический корень. Умножь 30 на один, и ты получишь 30. Умножь 20 на один еще раз, и ты получишь 30. Умножь 30 на 12, и 6,0 (360) ты получишь. Тридцать – это сторона твоего квадрата, и 6,0 (360) – твоя глубина.


Вводное предложение к первой задаче свидетельствует о том, что она полностью гипотетическая. В тексте приведено решение, но способ, с помощью которого оно было получено, учитель, очевидно, объяснял устно. Во второй задаче решение, наоборот, приведено полностью. По приведенным выше текстам видно, что вавилонские математики были прекрасно знакомы с кубическими корнями, а ведь табличка, на которой они записаны, датируется XVII или XVIII в. до н. э. Ассирийцы также, несомненно, умели извлекать квадратные корни и были способны вычислить квадратный корень из двух с минимальной погрешностью (1,414213 вместо 1,414214).

В приведенных выше расчетах также отразились две характерные черты месопотамской математики. Во-первых, они основаны на шестеричной системе счисления. Во-вторых, в то время как все системы счета, применявшиеся в древности (включая римскую), были непозиционными, жители Месопотамии оказались единственными, кто пользовался позиционной системой счисления, то есть значение каждой цифры в записи числа у них зависело от ее местонахождения. (К примеру, в числе 3333 одна и та же цифра обозначает 3000, 300, 30 и 3 соответственно.) И шестеричная, и позиционная системы счисления имеют ряд преимуществ, помогающих усовершенствовать вычисления, однако, к несчастью, в рамках шестеричной применялась и десятеричная система счисления, да и цифра 0 не была известна в Месопотамии вплоть до периода правления династии Селевкидов. Поэтому при решении месопотамских задач даже специалисты нередко сталкиваются с рядом трудностей, и можно предположить, что во многих случаях ученикам давались необходимые устные разъяснения.

Кроме того, необходимо обратить внимание на следующий факт: вавилонские математики, не использовавшие символы, применяли скорее алгебраические, чем арифметические методы. Судя по текстам некоторых из их задач, решить их можно было, только применив алгоритм, сходный с квадратным уравнением. В качестве примера приведем следующую задачу: «Я добавил 7 раз сторону моего квадрата и 11 раз его поверхность. В итоге получилось 6,15 (в шестизначной системе счисления). Запиши 7 и 11». Ее можно выразить в виде следующего квадратного уравнения: 11х2 + 7х = 6,15.

В ходе изучения некоторых табличек также можно сделать вывод о том, что вавилоняне были знакомы с функциями и при вычислениях использовали отношения рядов, экспоненциальную и логарифмическую зависимости. Они обладали абстрактным мышлением и любили цифры сами по себе, почти не задумываясь об их практическом применении. По этой причине вавилонская геометрия была гораздо меньше развита, чем алгебра. Математики были знакомы с некоторыми основными свойствами треугольника, прямоугольника и круга, но не сумели продемонстрировать их и измеряли полигональные поверхности с большими погрешностями. Геометрические фигуры, изображенные на табличках, являются лишь иллюстрациями к арифметическим проблемам. В отличие от греков вавилоняне увлекались не столько свойствами линий, поверхностей и объемов, сколько сложными подсчетами, обусловленными их взаимосвязями.

Прекрасной областью применения знаний математиков стала астрономия, благодаря чему эта наука в Месопотамии достигла настолько высокого уровня развития, что астрономы других древних государств остались далеко позади. Пристально изучать движение небесных тел жители Месопотамии стали по двум причинам: метафизической и хронологической. Первая из них была связана с верой в то, что события, происходившие на небе, повторяются и на земле, а также с мнением о том, что если планеты и созвездия тождественны богам, царям и государствам и можно проследить их взаимосвязи, то возможно предсказать будущее. Это в какой-то мере облегчало драматическую неуверенность, на которой зиждилась месопотамская философия. Таким образом, в основе астрономии лежала астрология, хотя принятая в Междуречье система никогда не была жесткой и оставляла возможность для божественного и человеческого вмешательства, а предопределенность, выраженная в форме гороскопов, появилась только в период правления Ахеменидов.

Перейти на страницу:

Похожие книги

Древний Египет
Древний Египет

Прикосновение к тайне, попытка разгадать неизведанное, увидеть и понять то, что не дано другим… Это всегда интересно, это захватывает дух и заставляет учащенно биться сердце. Особенно если тайна касается древнейшей цивилизации, коей и является Древний Египет. Откуда египтяне черпали свои поразительные знания и умения, некоторые из которых даже сейчас остаются недоступными? Как и зачем они строили свои знаменитые пирамиды? Что таит в себе таинственная полуулыбка Большого сфинкса и неужели наш мир обречен на гибель, если его загадка будет разгадана? Действительно ли всех, кто посягнул на тайну пирамиды Тутанхамона, будет преследовать неумолимое «проклятие фараонов»? Об этих и других знаменитых тайнах и загадках древнеегипетской цивилизации, о версиях, предположениях и реальных фактах, читатель узнает из этой книги.

Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс

Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии
Рассуждение о методе. С комментариями и иллюстрациями
Рассуждение о методе. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.Тексты снабжены подробными комментариями и разъяснениями.В формате PDF A4 сохранен издательский макет книги.

Рене Декарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Код удачи
Код удачи

Автор бестселлера «Код исцеления» доктор Александр Ллойд предлагает свою уникальную, реальную и выполнимую программу, которая поможет вам наконец-то добиться всего, чего вы хотите!В этой книге вы найдете «Величайший принцип успеха», который основан на более чем 25-летнем клиническом опыте и, по мнению сотен людей, является одним из самых значимых открытий XXI века. Этот принцип позволит вам всего за 40 дней избавиться от страха, который буквально на клеточном уровне мешает нам быть успешными. Впервые у вас в руках руководство для создания идеальной, успешной, благополучной и здоровой жизни, которое не требует сверхусилий по преодолению себя, а дает надежный и простой инструмент для работы с подсознанием, борьбы с внутренними проблемами, которые стоят на пути к вашему успеху.

Алекс Ллойд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература