Эффект от такой смены влажных и сухих состояний может быть очень велик. В частности, при падении уровня воды липидные везикулы оказываются сплющены вместе, а липиды в них перестраиваются так, что образуют стопки из мембран. Между их слоями помещаются захваченные нуклеотиды и некоторые другие молекулы. А поскольку сжимающиеся слои липидов сближают такие молекулы, вероятность образования связей между ними увеличивается[532]
.Среди прочего команде Димера удалось заметить, что нуклеотиды в этих условиях соединяются в похожие на РНК цепочки[533]
. А еще ученые смогли добиться саморепликации ДНК без участия ферментов[534] – то есть как раз того, что Джек Шостак так долго пытался проделать с РНК (см. главу 13)[535]. “Это было воспринято с тем еще скрипом, – вспоминает Димер. – Никто нам не поверил”. Однако с тех пор он тщательно исследовал происходящее в слоях липидов и узнал, как именно сближаются нуклеотиды[536]. Вдобавок выяснилось, что основания и сахара РНК могут стабилизировать группы липидов и ускорять образование протоклеток[537].“Это действительно способно сработать, – считает Димер. – Мы можем для начала взять огромную смесь случайных веществ, но в итоге благодаря всяким самопроизвольным сборкам и эволюционному отбору из этой смеси могут возникнуть по-настоящему уникальные и интересные, имеющие собственную организацию частицы”.
Сазерленд, Ди Мауро и Димер немного по-разному подошли к этой проблеме, но суть тут одна. Забудьте все эти Миры РНК, Железа и серы, Липидов и прочие гипотезы, полагающие первоосновой жизни какое-то определенное вещество, – все они обречены на провал. Лучше представьте себе короткие цепочки РНК и небольшие белки, которые работают в команде внутри простых липидных мембран. Особенностью биологических молекул является их способность “работать в команде”. И если какой-то из них недостает, все становится намного сложнее.
Из этих исследований следует важнейший вывод: зарождение жизни вовсе не так маловероятно, как считалось прежде. Разумеется, шансов на то, что живая клетка внезапно самостоятельно соберет себя из отдельных атомов, практически нет. Однако ученым удалось открыть химические реакции, которые происходят с легкостью: липиды сами по себе образуют везикулы, а РНК в подходящих условиях создает собственные копии. Следовательно, мы не можем судить о вероятности возникновения клетки по количеству ее компонентов. На самом деле вопрос звучит так: насколько специфичны обстоятельства, создающие благоприятные для этих процессов условия? Говорить о какой-то определенности пока рано, но в целом эти процессы кажутся вполне устойчивыми.
И все же представляется маловероятным, что РНК или белки в чистом виде могли сами образоваться в достаточных количествах. Ведь наверняка появлялись и какие-то другие, менее полезные соединения, которые все собой портили? Ну, во-первых, процессы вроде циклов высыхания и увлажнения изменяют вещества шаг за шагом и приводят к их постепенной очистке. А во-вторых, небольшие загрязнения не должны были стать серьезной проблемой. Димер установил, что везикулы, сделанные из нескольких сортов липидов, даже более стабильны[538]
. Смеси, состоящие из многих соединений, ведут себя сложнее и в этом отношении больше напоминают нечто живое[539]. Аналогично Шостак показал, что РНК может образовать рибозим даже в том случае, если некоторые из ее нуклеотидов окажутся “вверх ногами”[540]. А еще он получил функционирующие молекулы из смеси нуклеотидов ДНК и РНК[541] и показал, что нуклеотиды ДНК можно синтезировать с помощью реакций, использованных Сазерлендом[542]. И наконец, в 1994 году Рональд Брейкер и Джеральд Джойс открыли ДНК с каталитическими свойствами – теми самыми, которые когда-то стали основанием считать первоосновой РНК[543], [544].Назрела потребность в чем-то, что Шостак обозначил как “нечто среднее между совсем хаотичным и слишком упрощенным”[545]
. Карл Саган имел в виду как раз что-то подобное, когда еще в 1963 году задавался вопросом: “Не увела ли чистота лабораторных реагентов нас в сторону от реальной последовательности реакций, произошедших в те давние и не слишком чистые времена?”[546] Основания для таких сомнений дают, в частности, современные исследования сетей молекул РНК. В главе 8 мы упоминали, что совокупность РНК может стать автокаталическим набором. В нем одна молекула будет создавать вторую, та – какую-то третью, и это продлится до тех пор, пока не окажется воссозданой самая первая молекула. Тогда процесс создания набором своей полной копии завершится. В 2019 году Рио Мидзуучи и Найлс Леман[547] с помощью компьютерного моделирования доказали, что такой самореплицирующийся набор легче образуется из более разнообразной смеси РНК[548]. Недостаточное количество молекул РНК означает, что автокаталический набор может не образоваться, а их избыток способен испортить всю реакцию[549].