Ученые также доказали, что полученные ими фосфолипиды способны к самому главному для этих веществ трюку: самопроизвольному образованию структур, напоминающих клетки. Димер и его коллеги растворили полученную фосфолипидную жижу в солевом растворе и хорошенько потрясли. В результате фосфолипиды собрались в крошечные сферические пузырьки, которые внешне напоминали клетки. При ближайшем рассмотрении оказалось, что каждый из пузырьков имеет внешнюю мембрану, образованную двойным слоем фосфолипидов, – совсем как у настоящей клетки. Такие структуры называются “везикулы” – их можно обнаружить в любой живой клетке, которой они нужны для хранения различных важных субстанций (вроде питательных веществ).
Команда Димера нашла подтверждения тому, что простые подобия клеток, состоящие из тех же химических соединений, что и современные мембраны, могли самопроизвольно образоваться и миллиарды лет назад. Как и в случае других подобных экспериментов, возникает вопрос – действительно ли использованные реакции могли происходить в прошлом? Но в данном случае все выглядит правдоподобно. Цианамид и глицерин представляют собой простые и очень распространенные молекулы, так что они наверняка были и на древней Земле. А мест, где вода имеет температуру 65 °C, немало и на Земле современной.
За этим последовали эксперименты с использованием других липидов[317]
. И в результате в начале 80-х годов Димер имел уже право утверждать, что “напоминающие современные мембраны структуры могут быть с легкостью получены из липидных компонентов, которые наверняка были и на пребиотической Земле”[318].И все же везикулы – это еще не клетки. Недостаточно просто создать внешнюю мембрану и придать ей форму правильной сферы – а в то время Димеру и его коллегам не удалось добиться чего-то большего. На следующем этапе предстояло выяснить, могут ли везикулы служить хранилищем для биологических молекул вроде ДНК. Над этой проблемой он работал совместно с Гейлом Барчфелдом. Они тоже представили себе небольшое озерцо, которое бесконечно то пересыхало на солнце, то вновь наполнялось дождевой водой. Димер и Барчфелд смешали фосфолипидные везикулы с ДНК и подвергли их подобным циклам высыхания и повторного увлажнения. При высыхании везикулы резко изменили свою форму: фосфолипиды превратились в плоские слои, которые напоминали стопки начиненных ДНК блинчиков. После повторного увлажнения везикулы возвращались в исходную форму – но теперь уже с ДНК внутри. Такие протоклетки по-прежнему нельзя назвать живыми, однако этот опыт Димера и Барчфелда стал шагом вперед[319]
.Димер был тогда уже не единственным сторонником гипотезы “вначале был компартмент”. В 1980-е это направление привлекло и других ученых[320]
. Среди них был и Гарольд Моровиц, который занимался вопросом зарождения жизни с 1960-х, – его идеи нам еще предстоит обсудить. К концу 1980-х годов Моровиц уверился в том, что Димер выбрал правильный путь и что именно простые клетки (вероятно, везикулы вроде полученных Димером) сформировались первыми.В 1988 году Димер и Моровиц вместе с биохимиком Беттиной Хайнц (впоследствии успешной художницей)[321]
назвали такие везикулы “минимальными протоклетками”, то есть самой простой из возможных форм жизни[322]. Чтобы еще больше походить на живое, им был необходим какой-то источник энергии. Та же группа ученых предположила, что везикулы могли содержать в своих мембранах окрашенные молекулы пигментов. Когда на пигменты попадают солнечные лучи, они высвобождают электроны, способные запускать различные химические реакции. В том числе реакции, приводящие к образованию новых липидов для построения мембран. Поэтому далее Димер занялся исследованием особых групп пигментов[323].Моровиц развивал свои собственные идеи и в 1992 году выпустил книгу “Начало клеточной жизни” (