Если считать хемотон элементарной формой жизни, то Шостак уже сейчас на две трети создал ее в своей лаборатории. Он получил самокопирующиеся гены, находящиеся внутри образованной мембраной протоклетки, а также нашел способ связать этот процесс с делением протоклетки. Единственный недостающий элемент – это метаболизм, отстающий в развитии от других компонентов протоклетки (именно поэтому она, по Ганти, не может считаться по-настоящему живой).
Как же встроить метаболизм в протоклетки Шостака?[490]
Ожидать, что настолько простые структуры способны создать все свои компоненты из самых доступных химических соединений, пожалуй, не стоит. Но, возможно, им под силу создать некоторые из этих компонентов – либо научиться синтезировать какие-то особо значимые молекулы вроде простых белков. Не исключено, что РНК могли приобрести способность поглощать энергию солнечного света и использовать ее для синтеза своих новых копий[491]. Теоретическое моделирование показывает, что подобный “метаболический репликатор” способен превзойти лишенную метаболизма РНК[492]. С другой стороны, есть данные о том, что наборы молекул РНК могут разрушать отдельные собственные цепочки и создавать из их фрагментов рибозимы[493]. Также не исключено, что в протоклетках возможны те метаболические реакции, о которых говорили Вэхтерсхойзер и Мартин. Рассматривается и идея о том, что первые клетки использовали в качестве источника энергии цепочку связанных фосфатов, а не более “современный” АТФ (см. главу 11).Но, возможно, мы излишне все усложняем. По своей сути регуляция метаболизма – это способ организма контролировать происходящие в нем химические реакции, “включая” одни реакции и “выключая” другие. А для этого необходимо иметь катализаторы, которые избирательно ускоряют отдельные химические превращения. В современных организмах такими катализаторами служат ферменты. Но ведь многие ферменты имеют в своей основе нечто предельно простое: отдельные атомы или кластеры атомов металлов. Одна из таких структур представляет собой конструкцию из железа и серы. В 2017 году Клаудиа Бонфио и ее группа (куда входил и Шостак) показали, что такие железо-серные кластеры могут присоединиться к простым белкам, находящимся внутри протоклеток[494]
. Сочетание железа и серы наводит на мысль о Железо-серном Мире Гюнтера Вэхтерсхойзера, о котором мы говорили в главе 10.Все эти пути развития теоретически кажутся перспективными, но на практике связаны со сложностями. Именно поэтому попытки предсказать, когда именно ученые смогут создать полноценный хемотон, представляются нелепыми. И все же хемотон – это не неосуществимая мечта. Такая максимально упрощенная клетка стала бы наиболее реалистичной из всех моделей первого организма на Земле, когда-либо созданных человеком.
Можно задаться вопросом: если существование подобной минимальной клетки возможно, то почему ее никто и никогда не видел? Ведь даже самая простая бактерия имеет сразу сотни генов и организована неизмеримо сложнее, чем протоклетки Шостака. Наверное, дело в большей пластичности и устойчивости сложноорганизованных организмов. При таких условиях протоклетки-хемотоны могли бы выдержать конкуренцию только с другими протоклетками-хемотонами – если бы те уже не были давно и безжалостно уничтожены организмами посложнее. Несколько проведенных Шостаком опытов действительно свидетельствуют о том, что имеющие более высокую организацию протоклетки выходят победителями из соревнования с собратьями попроще.
Не стоит также забывать, что наши знания о мире микробов по-прежнему остаются очень поверхностными. Наиболее информативной иллюстрацией этого является, пожалуй, открытие гигантских вирусов. Уже из названия понятно, что они намного крупнее обычных вирусов: некоторые из них сравнимы по размеру с клетками бактерий. Такие огромные вирусы впервые описали в 2003 году, хотя первый из них (известный сейчас как