Читаем Великий замысел полностью

В эксперименте с двумя прорезями идеи Фейнмана сводятся к тому, что частицы выбирают пути, которые ведут либо сквозь одну прорезь, либо сквозь вторую; пути, что ведут сквозь первую прорезь, затем обратно через вторую, и вновь снова через первую; пути, ведущие в ресторан, где подают креветки в соусе карри, затем к Юпитеру, закручиваясь вокруг него несколько раз перед возвращением обратно; и даже пути, что ведут через Вселенную и обратно. Это, по мнению Фейнмана, объясняет, как частица получает информацию о том, какие прорези открыты — если прорезь открыта, частица направляется сквозь неё. Когда обе прорези открыты, пути частиц, путешествующих через одну прорезь, могут пересекаться с путями через вторую, вызывая тем самым интерференцию. Быть может это прозвучит невероятно, но для нынешней фундаментальной физики в целом, и для этой книги в частности, теория Фейнмана оказалась много полезнее, чем оригинальная.

Фейнмановское видение квантовой реальности является ключевым в понимании теорий, которые мы скоро представим, поэтому стоит потратить некоторое время на то, чтобы понять, как там всё устроено. Представьте себе простой процесс, в котором частица из пункта А начинает своё свободное движение. В Ньютоновой модели эта частица проследует по прямой. По истечении некоторого определённого времени мы обнаружим частицу в определенном пункте В, находящимся на этой прямой. В модели Фейнмана квантовая частица проводит выборку всех путей, соединяющих пункты А и Б, составляя при этом число, называемое фазой для каждого пути. Эта фаза представляет собой такое положение в волновом цикле, в котором волна находится либо на верхнем, либо на нижнем пике, или где-то посередине. Формула Фейнмана по математическому расчёту этой фазы показывает, что когда вы складываете вместе волны всех путей, вы получаете «амплитуду вероятности» достижения частицей из пункта А пункта Б. А затем квадрат амплитуды вероятности даёт конечную вероятность достижения пункта Б.

Фаза, в которой все отдельные пути входят в Фейнманову сумму (и, следовательно, в вероятность прохождения пути от А к Б) может быть представлена в виде стрелы определённой ограниченной длины, но могущей воткнуться в любом направлении. Добавим ещё две фазы: поместим стрелу, представляющую одну фазу у наконечника стрелы, представляющей другую фазу, и тем самым получим третью, общую стрелу, представляющую сумму. Чтобы увеличить количество фаз, просто продолжайте добавлять стрелы. Заметим, что когда фазы выстроены в линию, стрела, представляющая сумму может быть довольно длинной. Но если стрелы направлены в разные стороны, то они быстро заканчиваются, по мере их добавления, оставляя вас с совсем небольшим количеством стрел. Эта идея изображена на рисунке ниже.

Для выполнения условий Фейнмана по расчёту вероятностной амплитуды, что частица из пункта А достигнет пункта Б, вы просто складываете фазы или стрелы, представляющими все пути, связывающие А и Б. Существующих путей бесконечно много, что слегка усложняет расчёты, но этот способ работает. Некоторые пути показаны ниже.

Теория Фейнмана очень чётко показывает, как можно вывести Ньютонову картину мировосприятия из квантовой физики, кажущейся совершенно отличной. Согласно Фейнмановой теории, фазы связанные с каждым путём зависят от постоянной Планка. Теория предписывает, что поскольку постоянная Планка является очень малым числом, то, когда вы складываете сумму путей, близких другу другу, их фазы сильно варьируются, и, как видно на рисунке, их сумма в результате будет сводиться к нулю. Но теория также показывает, что существуют определенные пути, фазы которых имеют тенденцию выстроиться в линию, и именно они дают сумму более предпочтительную (значительную) для изучения процесса поведения частицы. Оказывается, что применительно к большим объектам, пути, подобные тем, что предсказаны теорией Ньютона, будут иметь подобные фазы, и в сумме дадут наибольшую составляющую. Таким образом, единственным конечным пунктом, имеющим практическую вероятность больше нуля, будет конечный пункт, предсказываемый теорией Ньютона, и этот пункт будет иметь вероятность очень близкую к единице. Следовательно, большие объекты двигаются именно так, как предсказывает теория Ньютона.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука