Первое фактическое научное доказательство, что у Вселенной было начало, появилось в 1920-х. Как мы сказали в Главе 3, было время, когда большинство ученых верило в статическую Вселенную, которая всегда существовала. Доказательства, правда, были косвенными, основанными на наблюдениях Эдвина Хаббла, сделанных с помощью 100-дюймового телескопа на горе Уилсона, на холмах выше Пасадены, Калифорния. Анализируя спектр света, который излучают галактики, Хаббл решил, что почти все галактики отдаляются от нас, и чем дальше они, тем быстрее они удаляются. В 1929 он открыл закон, связывающий падение интенсивности излучения галактик с их расстоянием от нас, и пришел к заключению, что Вселенная расширяется. Если это верно, то Вселенная, должно быть, была меньше в прошлом. Фактически, если мы экстраполируем к отдаленному прошлому, вся материя и энергия во Вселенной были бы сконцентрированы в очень крошечной области невообразимой плотности и температуры, и если бы мы вернулись достаточно далеко, когда все это началось, это событие, мы теперь называем Большим взрывом.
Идея, что Вселенная расширяется, заключает в себе некоторую тонкость. Например, мы не подразумеваем, что Вселенная расширяется таким образом, что, скажем, можно было бы расширить дом, выбивая стену и помещая новую ванную, в том месте, где когда-то возвышался величественный дуб. Вернее сказать, что не пространство расширяет само себя, а то, что увеличивается расстояние между двумя любыми точками Вселенной, которая расширяется. Эта идея появилась в 1930-х среди многочисленных дискуссий, но одним из лучших способов наглядно продемонстрировать это, является метафора, изложенная в 1931 Кембриджским университетским астрономом Артуром Эддингтоном. Эддингтон представил Вселенную как поверхность расширяющегося воздушного шара, и все галактики как точки на его поверхности. Эта картина ясно иллюстрирует, почему далекие галактики разлетаются более быстро, чем соседние. Например, если радиус воздушного шара, удваивался каждый час, то расстояние между любыми двумя галактиками на воздушном шаре также удваивалось бы каждый час. Если бы в некоторое время две галактики были на расстоянии в 1 дюйм, то час спустя они были бы на расстоянии в 2 дюйма, и они, казалось бы, двигались бы друг относительно друга со скоростью 1 дюйма в час. Но если бы они начали на расстоянии в 2 дюйма, то час спустя они были бы отделены на 4 дюйма и, казалось бы, разбегались друг от друга со скоростью 2 дюйма в час. Вот, что обнаружил Хаббл: чем дальше галактика, тем быстрее она удаляется от нас.
Важно понять, что расширение пространства не затрагивает размер материальных объектов, таких как галактики, звезды, яблоки, атомы, или другие объекты, скрепляемые некоторой силой. Например, если бы мы закрепили скопление галактик прочным кольцом на шаре, то это кольцо не расширялось бы, хотя шар продолжал бы расширяться. Это потому, что галактики связаны гравитационными силами, кольцо и галактики в пределах него сохраняли бы их размер и конфигурацию, тогда как шар увеличивался. Это важно, потому что мы можем обнаружить расширение, только если наши измерительные приборы имеют фиксированные размеры. Если бы все свободно расширялось, то мы, наши измерительные линейки, наши лаборатории, и так далее все расширились бы пропорционально, и мы не заметили бы различия.
То, что Вселенная расширяется, было новостью для Эйнштейна. Но возможность, что галактики разлетаются друг от друга, была высказана за несколько лет до статей Хаббла на теоретической почве, являющейся результатом собственных уравнений Эйнштейна. В 1922 году российский физик и математик Александр Фридман исследовал то, что произойдет с моделью Вселенной, основанной на двух предположениях, которые очень упростили математику: он предположил, что, во-первых, Вселенная выглядит одинаково во всех направлениях и, во-вторых, из любой точки. Мы знаем, что первое предположение Фридмана не совсем верно — Вселенная, к счастью, не всюду однородна! Скажем, просто взглянув вверх, мы могли бы увидеть Солнце, а могли бы — и Луну. Или даже колонию летучих мышей. Но Вселенная, действительно кажется, примерно одинаковой в каждом направлении, когда рассматривается в масштабе, который намного больше — больше даже чем расстояние между галактиками. Это что-то вроде того, как наблюдать за лесом сверху. Если Вы находитесь достаточно близко, Вы сможете разобрать отдельные листья, или, по крайней мере, деревья, и пространства между ними. Но если Вы будете настолько высоко, что, если Вы протягиваете большой палец, и он покрывает квадратную милю деревьев, то лес, будет казаться однородным оттенком зеленого. Мы сказали бы, что в том масштабе лес однороден.