Читаем Верховный алгоритм полностью

У людей действительно есть один постоянный ориентир: эмоции. Мы стремимся к удовольствиям и избегаем боли. Коснувшись горячей плиты, вы непроизвольно отдернете руку. Это просто. Сложнее научиться не трогать плиту: для этого нужно двигаться так, чтобы избежать острой боли, которую вы еще не почувствовали. Головной мозг делает это, ассоциируя боль не просто с моментом прикосновения к плите, но и с ведущими к этому действиями. Эдвард Торндайк101 назвал это законом эффекта: действия, которые ведут к удовольствию, станут с большей вероятностью повторяться в будущем, а ведущие к боли — с меньшей. Удовольствие как будто путешествует назад во времени, и действия в конце концов могут начать ассоциироваться с довольно отдаленными результатами. Люди освоили такой поиск косвенных наград лучше, чем любое животное, и этот навык критически важен для успеха в жизни. В знаменитом эксперименте детям давали зефир и говорили, что, если они выдержат несколько минут и не съедят его, им дадут целых два. Те, кому это удалось, лучше успевали в школе и позже, когда стали взрослыми. Менее очевидно, наверное, то, что с аналогичной проблемой сталкиваются компании, использующие машинное обучение для совершенствования своих сайтов и методов ведения бизнеса. Компания может принять меры, которые принесут ей больше денег в краткосрочной перспективе — например, начать по той же цене продавать продукцию худшего качества, — но не обратить внимания, что в долгосрочной перспективе это приведет к потере клиентов.

Обучающиеся алгоритмы, которые мы видели в предыдущих главах, руководствуются немедленным удовлетворением: каждое действие, будь то выявление письма со спамом или покупка ценных бумаг, получает непосред­ственное поощрение или наказание от учителя. Но есть целый подраздел машинного обучения, посвященный алгоритмам, которые исследуют мир сами по себе: трудятся, сталкиваются с наградами, определяют, как получить их снова. Во многом они похожи на детей, которые ползают по комнате и тащат все в рот.

Это обучение с подкреплением, и этот принцип, скорее всего, станет активно использовать ваш первый домашний робот. Если вы распакуете Робби, включите его и попросите приготовить яичницу с беконом, у него с ходу может не получиться. Но когда вы уйдете на работу, он изучит кухню, отметит, где лежит утварь, какая у вас плита. Когда вы вернетесь, ужин будет готов.

Важным предшественником обучения с подкреплением была программа для игры в шашки, созданная ученым Артуром Сэмюэлом, работавшим в 1950-х годах в IBM. Настольные игры — прекрасный пример проблемы обучения с подкреплением: надо построить длинную последовательность ходов без какой-то обратной связи, а награда или наказание — победа или поражение — ждет в самом конце. Программа Сэмюэла оказалась способна научиться играть так не хуже большинства людей. Она не искала напрямую, какой ход сделать при каждом положении на доске (это было бы слишком сложно), а скорее училась оценивать сами положения — какова вероятность выигрыша, если начать с этой позиции? — и выбирать ходы, ведущие к наилучшему положению. Поначалу программа умела оценивать только конечные позиции: победа, ничья и поражение. Но раз определенные позиции означают победу, значит, позиции, из которых можно к ней прийти, хорошие. Томас Уотсон-старший, президент IBM, предсказал, что после презентации программы акции корпорации поднимутся на 15 пунктов. Так и произошло. Урок был усвоен, IBM развила успех и создала чемпионов по игре в шахматы и Jeopardy!.

Перейти на страницу:

Похожие книги