Читаем Верховный алгоритм полностью

Вы можете оценить смещение и дисперсию обучающегося алгоритма, сравнив его прогнозы после обучения на случайных вариациях обучающей выборки. Если он продолжает повторять те же самые ошибки, проблема в смещении и нужно сделать его эластичнее (или просто взять другой). Если в ошибках алгоритма нет никакой схемы, проблема в дисперсии и надо либо попробовать менее гибкий, либо получить больше данных. У большинства обучающихся алгоритмов есть «ручка», с помощью которой можно отрегулировать гибкость: это, например, порог значимости и штрафы за размер модели. Подстройка — первое, что нужно попробовать.

Индукция — противоположность дедукции

Более глубокая проблема, однако, заключается в том, что большинство обучающихся алгоритмов начинают с очень скромного объема знаний, и никакая подстройка не сможет вывести их к финишной черте. Без руко­водства знаниями, равными по объему содержимому мозга взрослого человека, они легко сбиваются с курса. Простое допущение, что вы знаете форму правды (например, что это маленький набор правил), — совсем немного, хотя из этого исходит большинство алгоритмов. Строгий эмпирик заметил бы, что это все, что закодировано в архитектуре головного мозга новорожденного. И действительно, дети подвержены переобучению чаще, чем взрослые, однако мы хотели бы учиться быстрее, чем младенцы (даже если не считать колледж, 18 лет — это все равно долго). Верховный алгоритм должен уметь начинать с большого объема знаний, заложенных людьми или выученных в предыдущие заходы, и использовать его для извлечения из данных новых обобщений. Этот подход практикуют ученые, и это далеко не «чистая доска». Индукционный алгоритм, основанный на правиле «разделяй и властвуй», на это не способен, но это может сделать другой способ формулировки правил.

Главное — понять, что индукция — просто обратный дедукции процесс, точно так же как вычитание — это противоположность деления, а интегрирование — противоположность дифференцирования. Идея была впервые предложена Уильямом Стэнли Джевонсом49 в конце первого десяти­летия XIX века. В 1988 году англичанин Стив Магглтон и австралиец Рэй Бантайн разработали первый практический алгоритм, основанный на этом принципе. Стратегия брать хорошо известную операцию и выводить ее противоположность имеет в математике долгую историю. Применение этого принципа к сложению привело к изобретению целых чисел, потому что без отрицательных чисел сложение не всегда имеет противоположность (3 – 4 = –1). Аналогично применение его к умножению привело к открытию рациональных чисел, а возведение в квадрат дало комплексные числа. Давайте посмотрим, можно ли применить этот принцип к дедукции. Вот классический пример дедуктивного рассуждения:

Сократ — человек.

Все люди смертны.

Следовательно…

Первое утверждение — факт о Сократе, а второе — общее правило о людях. Что из этого следует? Конечно, что Сократ смертен, если применить это правило к Сократу. При индуктивном рассуждении мы вместо этого начинаем с исходного факта следствия и ищем правило, которое позволило бы вывести второе из первого:

Сократ — человек.

………

Следовательно, Сократ смертен.

Одним из таких правил будет: если Сократ — человек, значит, он смертен. Это правило соответствует условиям задачи, но не очень полезно, потому что не специфично для Сократа. Однако теперь мы применим принцип Ньютона и обобщим правило до всех сущностей: если сущность — человек, значит, она смертна. Или, более сжато: все люди смертны. Конечно, было бы опрометчиво выводить это правило на примере одного только Сократа, однако нам известны аналогичные факты о других людях:

Платон — человек. Платон смертен.

Аристотель — человек. Аристотель смертен.

И так далее.

Для каждой пары фактов мы формулируем правило, которое позволяет нам вывести второй факт из первого и обобщить его благодаря принципу Ньютона. Если одно и то же общее правило выводится снова и снова, можно с определенной уверенностью сказать, что оно верно.

Пока что мы еще не сделали ничего такого, чего бы не умел алгоритм «разделяй и властвуй». Однако предположим, что вместо информации, что Сократ, Платон и Аристотель — люди, мы знаем только, что они философы. Мы по-прежнему хотим сделать вывод, что они смертны, и до этого сделали вывод или нам сказали, что все люди смертны. Чего не хватает теперь? Другого правила: все философы — люди. Это тоже вполне обоснованное обобщение (как минимум пока мы не решим проб­лему искусственного интеллекта и роботы не начнут философствовать), и оно заполняет пробел в наших рассуждениях:

Сократ — философ.

Все философы — люди.

Все люди смертны.

Следовательно, Сократ смертен.

Перейти на страницу:

Похожие книги