В центре его теории систем находится понятие «машины». Формальное определение «машины», описывающее названный выше класс систем, включает те из них, которые образованы любым набором переменных. Кибернетический подход, принимая за основу поведение систем, интересуется теми из них, которые являются информационно непроницаемыми. С формальной точки зрения это означает, что поведение любой такой системы соответствует отображению «М» в «М», где «М» множество состояний т.[41] С содержательной точки зрения это означает, что кибернетику интересует не всякое поведение, а прежде всего воспроизводимое, регулярное или детерминированное. [42]
Конкретное определение системы, выступающее исходной идеализацией данной концепции, задается посредством понятия дискретной машины. Для этой цели Эшби использовал аппарат преобразований. Смысл последнего - в отбрасывании неясностей и неопределенностей в характеристике свойств системы. При этом используется важное допущение - конечность различий.[43] Специфическая черта класса машин, которые рассматривал Эшби - детерминированность. Последняя выразима через характеристику их поведения: они ведут себя так же, как однозначное замкнутое преобразование. Простейший тип машин этого класса составляют изолированные системы (т.е. без выхода). Таковые в своих изменениях из некоторого начального состояния проходят регулярно одну и ту же последовательность состояний. При этом состояние определяется точно ограниченным условием или свойством системы. [44]
Эшби специально подчеркивал теоретический уровень используемого им понятия система. В его трактовке система не есть просто некоторый эмпирический объект, но является понятием для выражения особой связи компонентов (на математическом языке - переменных), главная характеристика которой задается замкнутым однозначным преобразованием. [45] Для подобного задания системы в ряде случаев приходится обращаться к обобщенной форме выражения переменных - векторам. Эшби указывал, что в качестве переменной, изменения которой характеризуют поведение системы, может выступать вероятность. И на уровне вероятностей можно фиксировать поведение системы. [46]
Усложняя способы описания систем, Эшби вводил показатель, характеризующий изменение самого поведения машины (переход от одного преобразования к другому), который называет параметром. В его трактовке параметр тождественен входу машины.[47] Наличие входов позволяет соединять машины друг с другом. При этом состояние выхода одной должны соответствовать входам другой. Частным случаем соединения является так называемая «обратная связь». Для этого вход одной из двух машин должен испытывать воздействие выхода другой и наоборот. [48]
Развитые выше представления Эшби считал возможным применять к исследованию сложных систем. При этом он брал во внимание чисто гносеологическую характеристику сложности - описывая познавательную ситуацию при столкновении со сложной системой посредством введения понятия неопределенности ее поведения относительно данного наблюдателя.[49] Для сложных систем, по словам Эшби, не применим по существу метод разделения переменных. Системы становятся исключительно динамичными и внутренне связанными. Ранее же в основном останавливали свое внимание на простых и приводимых системах. Последнее имеет место, когда система состоит из ряда функционально независимых частей.[50]
Эшби интересовался свойствами систем, характеризующихся информационной непроницаемостью. Для этого использовался такой исследовательский прием, как метод «черного ящика». Под «черным ящиком» понимался объект, внутреннее устройство которого по каким-либо причинам недоступно исследователю. Обычный путь его изучения таков: манипулируя по своему желанию с входами и наблюдая выходы, пытаются сделать вывод о том, что может содержаться внутри «ящика».
Теория систем, по Эшби, имеет дело не с тем или иным «ящиком», но рассматривает ряд общих вопросов в связи с использованием названного метода. В число таких вопросов он включал следующие:
1. Какова должна быть общая стратегия исследования «черного ящика» любой природы?
2. Какого рода операции следует проводить над данными, полученными с выходов ящика, чтобы выводы были логически допустимыми?
3. Что можно в принципе вывести из поведения ящика и что принципиально не поддается дедукции?[51]