Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Характерную цикличность в случайном на первый взгляд процессе я наблюдал, принимая участие в игре «Лила» (рис. 6.14). Это разновидность игры «Лестницы и змеи», у которой, как говорят, древние индийские корни. Участники перемещают свои фишки (амулеты) согласно выпадающим числам на кубике, следуя переходам — «лестницам» или «стрелам», ведущим вперед, и «змеям», возвращающим игрока назад. Основной смысл заключается в философских и эзотерических толкованиях траектории, которую проходит игрок. В нашей компании были опытные люди, они делились впечатлениями от прошлых игр и восхищались «явно неслучайными» совпадениями траекторий игры и реальной жизни, точному их повторению от партии к партии — как у одного и того же, так и у разных участников.


Рис. 6.14. Доска для игры «Лила»


В игре 72 состояния, и правила бросания кубика нетривиальны: они делают более вероятными близкие переходы, но допускают и далекие скачки; кроме того, «лестницы» и «змеи» добавляют путаницы. Действительно, в игре много элементов случайности, но она все равно остается марковской, поскольку ближайшее будущее игрока определяется только текущим его состоянием. А значит, сам процесс можно анализировать на предмет наличия в нем повторяющихся последовательностей или наиболее вероятных состояний.

Несложно написать программу, которая могла бы играть в «Лилу», не задумываясь о сокровенном смысле состояний и переходов, и которую можно было бы использовать в анализе методом Монте-Карло. Приведу для тех, кому, как и мне, любопытно поэкспериментировать, алгоритм для одного шага.


Переходы по лестницам и змеям могут быть описаны ассоциативным массивом

Jumps = { 10:23, 16:4, 61:3, 20:32, 22:60, 24:7, 27:41, 28:50, 29:6, 37:66, 45:67, 46:62, 52:35, 54:68, 55:2, 61:3, 63:13, 72:51, 68:1 }

Вход: текущее состояние (номер клетки) s

если (jumps содержит состояние s), вернуть jumps[s]

m:= случайное целое число от 1 до 6

если (m = 6), m:= m + случайное число от 1 до 6

если (s > 60), m:= min(m,72-s)

вернуть s + m


Вот что можно сказать после сотни тысяч партий. Средняя продолжительность игры (то есть достижения 68-й клетки) составляет 41,5 шага, при этом в половине партий игра закончится после 31 шагов. Это довольно много: учитывая, что шаги совершаются по очереди четырьмя-пятью участниками, игра может длиться несколько дней. Клетки посещаются неравновероятно, и разброс вероятностей достаточно велик.

Но любому математику интереснее не получить ответ из эксперимента, а вывести из свойств исследуемой системы. Мы рассмотрим матрицу переходов M для игры, она показана на рис. 6.15.


Рис. 6.15. Графическое представление матрицы переходов для «Лилы». Ненулевые элементы показаны кружками, размеры отражают их величину


Эта квадратная матрица имеет столько строк, сколько существует состояний (клеток) игры. Насыщенность цвета каждой клеточки показывает вероятность перехода с позиции, указанной по вертикали, на позицию по горизонтали. Стрелки приводят пример, соответствующий вероятности перехода с 40-й клетки на 50-ю. Широкая полоса вокруг диагонали соответствует переходам с помощью кубика, прочие отмеченные точки — прыжкам, диктуемым «стрелами» и «змеями». Игра имеет одно поглощающее состояние: достигнув ячейки 68, игрок заканчивает партию. Но пока мы это правило заменим другим: пусть игрок, попав в клетку 68, вновь начинает с первой позиции. Этот переход показан незакрашенным кружком на матрице. Позже я объясню, для чего нам потребовалось таким способом закольцевать игру.

Точные параметры можно получить не прибегая к методу Монте-Карло, а используя только матрицу переходов. Квадратные матрицы образуют алгебру: их можно по определенным правилам складывать и вычитать, умножать на число, перемножать и «делить» (умножать на обратную матрицу). Как и для чисел, многократное умножение матрицы на себя можно рассматривать как возведение в целочисленную степень. В случае с матрицей переходов для цепи Маркова возведение в степень n дает нам распределение вероятностей для всех переходов из клетки в клетку через n шагов. Так мы получаем своего рода «машину времени», способную мгновенно переместить нас в будущее. Вот как выглядят матрицы переходов игры «Лила» после 2, 3, 10 и, как это ни странно звучит, бесконечного числа умножений (рис. 6.16).


Рис. 6.16. Матрицы переходов, возведенные в степени 2, 4, 10 и ∞


Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги