Здесь — Jω момент инерции винта и вращаемых им агрегатов. Формула (8) является условием равновесия моментов относительно оси вала несущего винта; слева — моменты аэродинамических и инерционных сил лопастей (положительные значения моментов направлены против вращения несущего винта), а справа — момент, создаваемый двигателями вертолета (положительные значения моментов направлены по вращению несущего винта); δNдв- мощность двигателей, расходуемая на приводы электро-, гидравлических и других систем вертолета, на вращение рулевого винта и теряемая из-за потерь на входе в двигатель и на выхлопе. Подставив формулу (8) в выражение (7), получим
Проинтегрировав выражение (9) в пределах рассматриваемого участка траектории, получим формулу для энергии вертолета, расходуемой на преодоление силы сопротивления несущего винта за время пролета участка траектории:
Используя это выражение, получим второй вариант уравнения баланса энергий:
Уравнение (11) интересно тем, что в него в явном виде входит энергия, сообщаемая несущим винтом. Определим величину, а
следовательно, и значимость каждой составляющей в балансе энергий (отметим, есть авторы, считающие, что посадочная скорость вертолета на режиме авторотации зависит главным образом от изменения кинетической энергии несущего винта, что несправедливо, так как в уравнение (11) входят другие, большие по величине слагаемые).
Подынтегральные функции в выражениях (6) и (11) определены по данным расчета посадок, выполненных численным интегрированием уравнений движения. Допустим, вертолет (G=11 т, Jω=1200 кгм/с²) снижался со скоростями V=130 км/ч, Vyg=-13,7 м/с, ω=25,2 1/с. На высоте 44 м летчик начал предпосадочный маневр, увеличив угол тангажа и с 3° до 20–25° за 1,3 с. При таких углах тангажа сила X увеличилась на ~ 4000 кг и стала равной 7000–8000 кг. Вертолет интенсивно замедлялся:(dV/dt)~~-4 м/c2, поэтому ю увеличилась до 27 1/с, а скорость снижения упала до 7 м/с. На V<100 км/ч уменьшение V прекратилось. На высоте 10 м летчик начал увеличение шага винта, то есть «подрыв». Шаг винта был увеличен до максимального — на 14° за 1,8 с. При этом шаге винт вертолета имел следующие величины безразмерных коэффициентов: Cт/σ=0,28, mk/a=0,019. Максимальное замедление винта на 4,8–5,3 секундах равно -6,51/с². Создаваемая инерционными силами мощность Jωω(dω/dt)= =163 тыс. кгм/с=2200 л.с., однако эта мощность создается в течение непродолжительного времени: 0,5 с (общее время замедления винта 3 с). Несмотря на уменьшение окружной скорости винта при промежуточной величине шага лопастей сила тяги винта увеличилась: Тmax =14 Тс. Следовательно, увеличилась подъемная сила винта и Vyg начала уменьшаться (по абсолютной величине). Величина угла атаки а во время планирования вертолета равнялась 19°, во время торможения — 30–37°. Предпосадочный маневр длился t2-t1= 5,6 с.
Столь интенсивное пилотирование потребовало отклонения автомата перекоса в пределах ±4°. Приземление вертолета произошло с углами тангажа фюзеляжа и винта 8° и 3° соответственно, со скоростями V2=65,7 км/ч, Vyg=-2,6 м/с, ω2=17 1/с, с углами θ=8°, α=3+8=11°.
«Подрыв» приводит к существенному уменьшению вертикальной составляющей посадочной скорости, но мало влияет на горизонтальную составляющую и длину пробега вертолета (рис. 2).
Величины изменения энергий за время предпосадочного маневра оказались следующими (в 1000 кгм или 10000 Дж):
энергия винта и планера: 955 и 65.
Таким образом, работа внешних сил А=480-955-65=-540, следовательно, теорема (1) и уравнение баланса энергий выполнены: -540-480+955+65=0. Энергия винта, равная 955, состоит из индуктивных и профильных потерь: 700 и 398; потерь на привод систем вертолета: 63; изменения кинетической энергии винта: -206 (700+398+63-206=955).
Большая часть энергии пришлась на преодоление индуктивных и профильных потерь несущего винта. Уменьшение кинетической энергии несущего винта внесло в баланс энергий вертолета 206 тыс. кгм. Эта величина складывается из роста энергии при замедлении винта (в основном при «подрыве») на 280 тыс. кгм, а потери при начальной раскрутке винта равны 74 тыс. В балансе энергий кинетическая энергия винта составляет 17 %.
Определение посадочной скорости сводится к определению кинетической энергии вертолета в момент приземления. В этом примере по расчету уравнения (6) она равна: mV2²/2=(725+480)-(955+65)-1205-1020=185 тыс. кгм. По уравнению (11) энергия вертолета в момент приземления равна (725+480)+(206)-(700+398+63+65) = =1411–1226=185 тыс. кгм. Первая скобка в этом выражении — это энергия в начале предпосадочного маневра, вторая — энергия, приобретенная во время предпосадочного маневра, третья скобка — потерянная энергия.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное