В те вечера, когда друзья собирались все вместе, хозяин угощал их вином, и приятели чокались друг с другом попарно. Сколько раз при этом звучали бокалы, сталкиваясь между собой?
Рис. 192.
190. Основание Карфагена
Об основании древнего города Карфагена существует следующее предание. Дидона, дочь тирского царя, потеряв мужа, убитого ее братом, бежала в Африку и высадилась со многими жителями Тира на ее северном берегу. Здесь она купила у нумидийского царя столько земли, «сколько занимает воловья шкура». Когда сделка состоялась, Дидона разрезала воловью шкуру на тонкие ремешки и окружила ими участок земли. Благодаря такой уловке она получила участок, достаточный для сооружения крепости. Так, гласит предание, возникла крепость Карфаген, вокруг которой впоследствии был построен город.
Попробуйте вычислить, какую площадь могла занимать крепость, если считать, что воловья шкура имеет поверхность 4 м2, и принять ширину ремешков, на которые Дидона ее изрезала, равной одному миллиметру.
Решения задач 181-190
181. Оба насчитали одинаковое число прохожих. Действительно, тот, кто стоял у ворот, считал следовавших в обе стороны, зато тому, кто ходил, навстречу попалось вдвое больше людей.
182. Если сын теперь втрое моложе отца, то отец старше его на удвоенный возраст. Но и пять лет назад он был, конечно, старше сына на утроенный
Итак, сыну теперь 15 лет, отцу 45. Пять лет назад отцу было 40 лет, а сыну 10, т. е. вчетверо меньше.
183. Вторая лодка опоздала потому, что двигалась со скоростью 24 версты в час меньше времени, чем со скоростью 16 верст в час. Действительно, со скоростью 24 версты в час она двигалась 24: 24 = 1 час, а со скоростью 16 верст в час 24: 16 = 11/2 часа. Поэтому на пути туда лодка потеряла времени больше, чем выгадала на обратном.
184. По течению гребец плывет со скоростью полверсты в минуту, против течения — со скоростью 1/12 версты в минуту. В первую скорость включена скорость самого течения, у второй она вычтена. Следовательно,
т. е.
версты в час
— это собственная скорость гребца.
И значит, в стоячей воде гребец преодолеет 10 верст за
Обычный ответ: в озере гребец проплывет 10 верст за то же время, что и в реке, так как потеря скорости будто бы восполняется выигрышем ее — совершенно не верен (см. предыдущую задачу).
185. Плывя по течению, пароход делает 1 версту в 3 минуты; плывя против течения — 1 версту в 4 мин. На каждой версте пароход в первом случае выгадывает 1 мин. А так как на всем расстоянии он выгадывает во времени 5 ч, или 300 мин, то, следовательно, от Энска до Иксграда 300 верст. Действительно,
300:15–300:20 = 20–15 = 5.
186. Для удобства перенумеруем яйца:
крутое № 1. К1
крутое № 2. К2
всмятку № 1. С1
всмятку № 2. С2
всмятку № 3. С3
Из этих яиц можно составить следующие 10 пар:
К1К2 К2С1 С1С2
К1С1 К2С2 С1СЗ
К1С2 К2С3 С2СЗ
К1С3
Мы видим, что только одна пара — первая — состоит из крутых яиц, остальные 9 не дают требуемого сочетания.
Значит, у вас только 1 шанс из 10 взять пару крутых яиц; в остальных 9 случаях из 10 вы проигрываете. И если вы ставите 1 руб., то ваш партнер, имеющий 9 шансов из 10 выиграть, должен для уравнения шансов поставить не 5, а 9 рублей.
187. При четырех бросаниях число всевозможных положений игральной кости равно 6 x 6 x 6 x 6 = 1296. Допустим, что при первом бросании выпало единичное очко. Тогда при трех следующих бросаниях число всевозможных положений кубика, благоприятных для Петра (т. е. число выпаданий любых очков, кроме единичного), равнялось 5 x 5 x 5 = 125. Для Петра также возможно 125 благоприятных расположений, если единичное очко выпадает только при втором, только при третьем или только при четвертом бросании. Итак, существует 125 + 125 + 125 + 125 = 500 различных возможностей того, что единичное очко при четырех бросаниях появится один и только один раз. Неблагоприятных же возможностей имеется 1296 — 500 = 796 (так как таковыми являются все остальные случаи).
Мы видим, что у Владимира шансов выиграть больше (796 против 500), чем у Петра.
188. Нетрудно сообразить, что все семь друзей могли одновременно встречаться у хозяина через такое число дней, которое делится и на 2, и на 3, и на 4, и на 5, и на 6, и на 7. Наименьшее из таких чисел есть 420. Следовательно, друзья собирались вместе только один раз в 420 дней (14 месяцев).