Читаем Веселые задачи. Две сотни головоломок полностью

123. Из условия задачи мы знаем, что вес бутылки + вес керосина = 1000 г.

А так как кислота вдвое тяжелее керосина, то вес бутылки + двойной вес керосина = 1600 г.

Отсюда ясно, что разница в весе: 1600–1000, т. е. 600 г, есть вес керосина, налитого в бутылку. Но бутылка вместе с керосином весит 1000 г; значит, бутылка весит 1000 – 600 = 400 г.

Действительно, вес кислоты (1600 – 400 = 1200 г) оказывается вдвое больше веса керосина.

124. Три четверти бруска мыла плюс гиря в 3/4 килограмма весят столько же, сколько целый брусок. Но целый брусок – это 3/4 бруска плюс 1/4 бруска. Значит, 1/4 бруска весит 1/ 4 кг. И следовательно, целый брусок весит в четыре раза больше, чем 3/4 кг, т. е. 3 кг.

125. Сравнивая оба взвешивания, легко увидеть, что от замены одной кошки одним котенком вес груза уменьшился на 15–13, т. е. на 2 кг. Отсюда следует, что кошка тяжелее котенка на 2 кг. Зная это, заменим при первом взвешивании всех четырех кошек котятами: у нас будет тогда 4 + 3 = 7, а стрелка весов, вместо 15 кг, покажет на 2 × 4, т. е. на 8 кг меньше. Значит, 7 котят весят 15 – 8 = 7 кг.

Отсюда ясно, что котенок весит 1 кг, взрослая же кошка

1 + 2 = 3 кг.

Рис. 133.

126. Сравните первое и второе взвешивания. Вы видите, что раковину при первом взвешивании можно заменить 1 кубиком и 8 бусинами, потому что они имеют одинаковый вес. После такой замены у нас окажется на левой чашке 4 кубика и 8 бусин, которые будут уравновешиваться 12 бусинами. Сняв теперь с каждой чашки по 8 бусин, мы не нарушим равновесия; останется же у нас на левой чашке 4 кубика, на правой – 4 бусины. Значит, кубик и бусина весят одинаково.

Теперь определим, сколько бусин весит раковина: заменив (второе взвешивание) на правой чашке кубик бусиной, узнаем, что вес раковины = весу 9 бусин.

Полученный результат легко проверить: замените при первом взвешивании кубики и раковины на левой чашке соответственным числом бусин – получите 3 + 9 = 12 бусин, как и должно быть.

127. Заменим при первом взвешивании 1 грушу на 6 персиков и 1 яблочко: мы вправе это сделать, так как груша весит столько же, сколько 6 персиков и яблочко. У нас окажется на левой чашке 4 яблочка и 6 персиков, на правой – 10 персиков. Сняв с обеих чашек по 6 персиков, узнаем, что 4 яблочка весят столько, сколько весят 4 персика. Другими словами, один персик весит столько же, сколько одно яблочко. Теперь уже легко сообразить, что вес груши равен весу 7 персиков.

128. Эту задачу можно решить по-разному. Вот один из способов.

Заменим при третьем взвешивании каждый кувшин 1 бутылкой и 1 стаканом (из первого взвешивания следует, что весы при этом останутся в равновесии). Таким образом, 2 бутылки и 2 стакана уравновешиваются 3 блюдцами. На основании второго взвешивания, каждую бутылку мы можем заменить 1 стаканом и 1 блюдцем. Получив, что 4 стакана и 2 блюдца уравновешиваются 3 блюдцами.

Сняв с каждой чашки весов по 2 блюдца, узнаем, что 4 стакана уравновешиваются 1 блюдцем.

И следовательно, бутылка уравновешивается (сравни со вторым взвешиванием) 5 стаканами.

129. Порядок отвешивания таков. На одну чашку кладут молоток, на другую – гирю и столько же сахарного песка, чтобы чашки уравновесились; ясно, что насыпанный на вторую чашку песок весит 900–500 = 400 г. Эту операцию выполняют еще три раза; остаток песка весит 2000 – (4 × 400) = 400 г. Теперь нужно содержимое каждого из пяти полученных 400-граммовых пакетов разделить пополам, на два равных по весу пакета. Делается это без гирь, очень просто: содержимое 400-граммового пакета рассыпают в два блюдца, поставленные на разные чашки, до тех пор, пока весы не уравновесятся.

Перейти на страницу:

Похожие книги