Читаем Веселые задачи. Две сотни головоломок полностью

Такие часы можно в ясные дни использовать как компас.

Каким образом?

148. О том же

Нельзя ли, за неимением компаса, воспользоваться нашими обыкновенными карманными часами, чтобы в ясный день определять по ним, хотя бы приблизительно, страны света?

149. Цифра шесть

Спросите кого-нибудь из ваших знакомых постарше, как давно он обладает карманными часами. Положим, окажется, что часы у него уже 15 лет. Продолжайте тогда разговор примерно в таком духе:

– А сколько раз в день вы обычно смотрите на свои часы?

– Раз двадцать, вероятно, или около того, – последует ответ.

– Значит, в течение года вы смотрите на свои часы не менее 6000 раз, а за 15 лет видели их циферблат 6000 х 15, т. е. чуть ли не сто тысяч раз. Вы, конечно, знаете и отлично помните вещь, которую видели сто тысяч раз?

– Ну, разумеется!

– Вам поэтому прекрасно должен быть известен циферблат ваших карманных часов, и вы не затруднитесь изобразить на память, как обозначена на нем цифра шесть.

И вы предлагаете собеседнику бумажку и карандаш.

Он исполняет вашу просьбу, но… изображает цифру шесть в большинстве случает совсем не так, как она обозначена на его часах.

Почему? Ответьте на этот вопрос, не глядя на ваши карманные часы.

150. Тиканье часов

Положите свои карманные часы на стол, отойдите шага на три или четыре и прислушайтесь к их тиканью. Если в комнате достаточно тихо, то вы услышите, что ваши часы идут словно с перерывами: то тикают короткое время, то на несколько секунд замолкают, то снова начинают идти и т. д.

Чем объясняется такой неравномерный ход?

Решения задач 141-150

141. Начнем наблюдать за движением стрелок в XII часов. В этот момент одна стрелка покрывает другую. Так как часовая стрелка движется в 12 раз медленнее минутной (она описывает полный круг за 12 ч, а минутная за 1 ч), то в течение ближайшего часа стрелки, конечно, встретиться не могут. Но вот прошел час; часовая стрелка стоит у цифры I, сделав 1/12 долю полного оборота; минутная же сделала полный оборот и стоит у XII – на 1/12 долю круга позади часовой. Теперь условия состязания иные, чем раньше: часовая стрелка движется медленнее минутной, но она впереди, и минутная должна ее догнать. Если бы состязание длилось целый час, то за это время минутная стрелка прошла бы полный круг, а часовая – 1/12 круга, т. е. минутная сделала бы на 11/12 круга больше. Но чтобы догнать часовую стрелку, минутной нужно пройти больше, чем часовой, только на ту 1/12 долю круга, которая их отделяет. Для этого потребуется времени не целый час, а меньше во столько раз, во сколько 1/12 меньше 11/12, т. е. в 11 раз. Значит, стрелки встретятся через 1/11 ч, т. е. через 60/11 = 11/12 мин. Итак, встреча стрелок случится спустя 55/11 мин после часа дня, т. е. в 55/11 мин второго.

Когда же произойдет следующая встреча?

Нетрудно сообразить, что это случится через 1 час 55/11 мин, т. е. в 2 ч. 105/11 мин. Следующая – спустя еще 1 час 55/11 мин, т. е. в 3 ч 164/11 мин, и т. д. Всех встреч, как легко видеть, будет 11; последняя наступит через 11/11 × 11 = 12 ч после первой, т. е. в 12 ч; другими словами, очередная встреча стрелок совпадает с самой первой и дальнейшие встречи повторятся снова в известные моменты.

Вот полный перечень встреч:

1-я встреча – в 1 ч 55/11 мин

2-я —»-в 2» 1010/11 »

3-я —»-в 3» 164/11»

4-я —»-в 4» 219/11»

5-я —»-в 5» 273/11»

6-я —»-в 6» 328/11»

7-я —»-в 7» 382/11 »

8-я —»-в 8» 437/11»

9-я —»-в 9» 391/11»

10-я —»-в 10» 546/11»

11-я —»-в 12 ч

Перейти на страницу:

Похожие книги