откуда 1 = 111/2 × х, или х = 2/23 целого оборота,т. е. стрелки будут расположены требуемым образом через 11/23 ч после XII, т. е. в 1 ч 214/23 мин минутная стрелка должна стоять посредине между XII и 11/23 часами, т. е. на 12/23 часа, что как раз и составляет 1/23 полного оборота (часовая стрелка к этому моменту пройдет 2/23 полного оборота). Второй раз стрелки расположатся требуемым образом в момент, который определится из равенства
откуда 2 = 111 /2 x и x = 4/23; искомый момент — 2 ч 5 5/23 мин. Третий искомый момент — 3 ч 719/23 мин и т. д.
145. Эта задача решается так же, как и предыдущая. Вообразим, что обе стрелки стояли у XII, и затем часовая отошла от XII на некоторую часть полного оборота, которую мы обозначим буквой
1 — 12 × х = х.
Отсюда 1 = 13 × х (потому что 13 × х — 12 × х = х). Следовательно, х = 1/13 доле полного оборота. Такую долю оборота часовая стрелка проходит за 12/13 ч и показывает 555/13 мин первого. Минутная же стрелка за это время прошла в 12 раз больше, т. е. 12/13 полного оборота. А значит, обе стрелки отстоят от отметки XII одинаково и, следовательно, одинаково отодвинуты и от отметки VI, находясь от нее по разные стороны.
Мы нашли одно положение стрелок — именно то, в котором они оказываются в течение первого часа. В течение второго часа подобное расположение стрелок возникает еще раз; мы найдем его, рассуждая прежним образом, из равенства
1 — (12 × х — 1) = х, или 2– 12 × х = х,
откуда 2= 13 × х (поскольку 13 × х — 12 × х = х), следовательно, х = 2/13 полного оборота. В таком положении стрелки будут в 111/13 ч, т. е. в 5010/13 мин. второго.
В третий раз стрелки займут требуемое положение, когда часовая стрелка отойдет от XII на 3/13 полного круга, т. е. в 210/13 часа, и т. д. Всех положений
146. Обычно отвечают: «7 секунд». Но такой ответ, как сейчас увидим, неверен.
Когда часы бьют три, мы слышим две паузы:
1) между первым и вторым ударом;
2) между вторым и третьим ударом. Обе паузы длятся 3 с, значит, каждая продолжается вдвое меньше — 11/2 с. Когда же часы бьют семь, то таких пауз бывает 6. Шесть раз по полторы секунды составляют 9 с. Следовательно, часы бьют семь, т. е. делают 7 ударов за 9 с.
147. Солнце при своем кажущемся суточном движении описывает полный круг за 24 часа, т. е. за столько же времени, что и
Отсюда вытекает простой способ отыскивать с помощью часов (конечно, только днем, в безоблачную погоду) то место, где Солнце бывает в полдень, т. е. находить направление на юг. Для этого нужно расположить циферблат так, чтобы часовая стрелка «смотрела» на Солнце; тогда направление на цифры XII укажет, где было солнце в 12 часов, т. е. направление на юг.
Рис. 152. Часы в роли компаса.
148. Часовая стрелка обыкновенных часов описывает полный круг не за 24, а за 12 часов, т. е. движется вдвое медленнее, чем Солнце по небу. Отсюда легко сообразить (см. предыдущую задачу), как найти направление на юг с помощью обыкновенных карманных часов. Нужно расположить их так, чтобы часовая стрелка была направлена на Солнце, и разделить пополам (на глаз) угол между часовой стрелкой и направлением на цифру XII. Линия, делящая этот угол пополам, покажет, где солнце было в полдень, т. е. точку юга.
149. Большинство людей в ответ на вопрос нашей задачи рисуют 6, либо VI.
Это говорит о том, что можно видеть вещь сто тысяч раз и все-таки не знать ее. Дело в том, что обычно на циферблате (мужских часов) цифры шесть вовсе нет — на ее месте помещается секундник (рис. 153).
Рис. 153.
150. Загадочные перерывы в тиканьи часов объясняются утомлением слуха. Наш слух притупляется на несколько секунд, и в эти промежутки мы не слышим тиканья. Спустя короткое время утомление проходит и прежняя чуткость восстанавливается, тогда мы снова слышим ход часов. Затем наступает опять утомление и т. д.
Неожиданные подсчеты
151. Стакан гороху
Вы много раз держали в руках горошину и не менее часто имели дело со стаканом. Размеры того и другого вам должны быть поэтому хорошо знакомы. Представьте теперь стакан, доверху наполненный горохом, и вообразите, что все эти горошины поставлены в один ряд, вплотную одна к другой.
Как вы думаете: этот ряд окажется длиннее обеденного стола или короче?