Читаем Ветер и его использование полностью

Быстроходные же ветродвигатели с малым числом лопастей трогаются с места при скоростях ветра от 4,5 до 6 метров в секунду. Поэтому их приходится пускать в работу или без нагрузки или при помощи специальных устройств.

Хорошее трогание с места и простота конструкции карусельных, роторных и барабанных ветродвигателей подкупают многих изобретателей и конструкторов, которые считают их идеальными ветродвигателями. В действительности, однако, эти машины имеют ряд существенных недостатков. Эти недостатки затрудняют их использование даже с такими распространёнными и простыми машинами, как поршневые насосы и жерновые мукомольные установки.

Ветродвигатели с приёмниками энергии ветра роторного типа очень плохо используют энергию воздушного потока, коэффициент использования энергии ветра у них в 2—2,5 раза меньше, чем у крыльчатых ветродвигателей. Поэтому при равных ометаемых лопастями поверхностях крыльчатые ветродвигатели могут развить мощность в 2— 2,5 раза большую, чем карусельные, роторные и барабанные ветросиловые установки.

Ветродвигатели роторного типа в настоящее время используются лишь в виде небольших кустарных установок мощностью до 0,5 лошадиной силы. Например, они находят применение для привода в движение различных вентиляционных устройств в помещениях для скота, кузницах и других производственных помещениях в сельском хозяйстве.

От чего зависит мощность ветродвигателя?

Мы знаем, что энергия воздушного потока непостоянна, поэтому любой ветряной двигатель имеет переменную мощность. Мощность любого ветродвигателя зависит от скорости ветра. Установлено, что при увеличении скорости ветра в два раза мощность на крыльях ветродвигателя увеличивается в 8 раз, а при росте скорости воздушного потока в 3 раза мощность ветродвигателя увеличивается в 27 раз.

Мощность ветродвигателя зависит также и от величины приёмника энергии ветра. В этом случае она пропорциональна той площади, которую ометают лопасти ветрового колеса или ротора. Например, у крыльчатых ветродвигателей ометаемая лопастями поверхность будет площадью круга, который описывает конец лопасти за один полный оборот. У барабанных, карусельных и роторных ветродвигателей ометаемая лопастями поверхность представляет площадь прямоугольника с высотой, равной длине лопасти, и с шириной, равной расстоянию между наружными кромками противоположных лопастей.

Однако любое ветровое колесо или ротор превращает в полезную механическую работу лишь часть энергии воздушного потока, проходящего через ометаемую лопастями поверхность. Эта часть энергии определяется коэффициентом использования энергии ветра. Величина коэффициента использования энергии ветра всегда меньше единицы. У лучших современных быстроходных ветродвигателей этот коэффициент достигает 0,42. У серийных заводских быстроходных и тихоходных ветродвигателей коэффициент использования энергии ветра обычно равен 0,30—0,35; это значит, что примерно лишь одна треть энергии воздушного потока, проходящего через ветровые колёса ветродвигателей, превращается в полезную работу. Остальные две трети энергии остаются не использованными.

Советский учёный Г. X. Сабинин на основании расчётов установил, что даже у идеального ветряка коэффициент использования энергии ветра равен только 0,687.

Почему же этот коэффициент не может быть равным или даже близким к единице?

Объясняется это тем, что часть энергии ветра затрачивается на образование вихрей у лопастей и скорость ветра за ветроколесом падает.

Таким образом, фактическая величина мощности ветродвигателя зависит от коэффициента использования энергии ветра. Мощность ветродвигателя пропорциональна его значению. Это значит, что с увеличением коэффициента использования энергии ветра увеличивается мощность ветродвигателя, и наоборот.

Барабанные, карусельные и роторные ветродвигатели с простейшими лопастями имеют очень низкие коэффициенты использования энергии ветра. Их значения колеблются в широких пределах от 0,06 до 0,18. У крыльчатых же двигателей этот коэффициент находится в пределах от 0,30 до 0,42.

Кроме этого, полезная мощность любого ветродвигателя пропорциональна ещё коэффициенту полезного действия механизма передачи, а также плотности воздуха. Обычно коэффициент полезного действия механизмов современных ветродвигателей равен от 0,8 до 0,9.

Из сказанного о мощности ветродвигателя следует, что при данном ветре тот ветродвигатель будет иметь более высокую мощность, у которого через поверхность, ометаемую крыльями, протекает наибольшее количество воздушного потока, а лопасти ветроколеса имеют хорошо обтекаемый профиль.

4. КАК СОВРЕМЕННЫЕ ВЕТРОДВИГАТЕЛИ БОРЮТСЯ С «КАПРИЗАМИ» ВЕТРА

В дореволюционной России не было промышленности, производящей ветродвигатели; они строились лишь кустарным способом. Но мысль о способе наилучшего, наивыгоднейшего использования энергии ветра зародилась в России.

Перейти на страницу:

Все книги серии Научно-популярная библиотека

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука