Читаем Вид с высоты полностью

Липиды, играющие главные роли на фоне метана и водорода, бедны как кислородом, так и азотом; они почти целиком состоят из углерода и водорода и поэтому неполярны.

Но на такой горячей планете, как Меркурий, ни белки, ни нуклеиновые кислоты, ни липиды не могли бы существовать. При температуре жидкой серы все известные нам органические соединения — кроме простейших — разрушаются. Земные белки при температуре от 60 градусов и выше разрушаются уже через несколько минут.

Как же тогда стабилизировать органические соединения? Первое, что приходит в голову, — это заменить водород каким-нибудь другим элементом, так как в горячих мирах ощущается острая нехватка водорода.

Давайте поговорим о водороде. Атом водорода — самый маленький из всех атомов; его можно протиснуть в молекулярную структуру там, где другие атомы не пройдут. В любую, даже самую сложную углеродную цепочку можно со всех сторон втиснуть маленькие атомы водорода — получатся углеводороды. Любой другой атом оказался бы для этого слишком большим… кроме одного.

«Кроме одного»! Какого же? Оказывается, только атом фтора по размерам почти так же мал, как атом водорода, и обладает сходными химическими свойствами (по крайней мере в отношении способности участвовать в определенных комбинациях молекул). К сожалению, фтор так активен, что химикам очень трудно с ним работать, и поэтому они, естественно, больше занимались исследованиями не столь агрессивных элементов.

Но во время второй мировой войны положение изменилось. Возникла необходимость работать с гексафторидом урана: это был единственный способ ввести уран в соединение, которое без особого труда превращалось в газ. Работу с ураном надо было продолжить (вы знаете почему), и волей-неволей пришлось иметь дело и с фтором.

В результате была создана целая группа фторуглеродов, сложных молекул, состоящих из углерода и фтора, а не из углерода и водорода. Так была заложена основа химии фторорганических соединений.

Разумеется, фторуглероды инертны в значительно большей степени, чем соответствующие углеводороды (именно это свойство оказалось особо ценным для промышленности), и, по-видимому, совершенно не обладают гибкостью и изменчивостью, необходимыми для жизни.

Но ведь полученные до настоящего времени фторуглероды аналогичны полиэтилену или полистиролу. Эти последние относятся к органическим соединениям водорода, а если бы нам пришлось судить о возможностях таких соединений только по полиэтилену, то мы едва ли могли бы составить представление о белках.

Насколько мне известно, до сих пор еще никто не только не имел дела с проблемой фтористых белков, но даже и не думал об этом. Но почему бы нам и не поговорить о ней? Не приходится сомневаться в том, что фтористые белки при обычной температуре должны быть гораздо менее активными, чем обычные белки. Но на такой планете, как Меркурий, где температура настолько высока, что водородные органические соединения разрушаются, фторорганические соединения могли бы стать как раз настолько активными, чтобы поддержать жизнь; возможно, именно из этих фторорганических соединений и развилась бы там жизнь.


* * *


Такая фторорганическая жизнь на фоне серы возможна, конечно, лишь при условии, что количества фтора, углерода и серы на горячих планетах достаточны для развития жизни в результате случайных реакций, протекавших на протяжении всего существования солнечной системы.

Каждый из перечисленных элементов в умеренном количестве имеется в любом уголке Вселенной, так что это условие, в общем, не так уж невыполнимо. Но на всякий случай поговорим и о возможных альтернативах.

Что, кроме углерода, может послужить главной составной частью гигантских молекул, на которых строится жизнь? Какие другие элементы обладают почти уникальной особенностью — способностью образовывать длинные цепочки и кольца из атомов? Ведь именно благодаря этой способности углерода возможно существование гигантских молекул, воплощающих разнообразие жизни.

В этом отношении более всего сходны с углеродом бор и кремний. И в периодической таблице элементов (в том виде, в каком ее обычно изображают) бор располагается как раз слева от углерода, а кремний — точно под ним. Однако бор — это элемент довольно редкий. Из-за низкой концентрации в коре планет его участие в случайных реакциях, порождающих жизнь, было бы таким редким, что жизнь на основе бора вряд ли появилась бы даже за пять миллиардов лет.

Остается только кремний, и уж здесь мы по крайней мере можем чувствовать себя уверенно. На Меркурии или на любой другой «горячей» планете может недоставать углерода, водорода или фтора, но, по-видимому, там имеются огромные количества кремния и кислорода: известно ведь, что это основные компоненты горных пород. Если «горячая» планета начнет сперва утрачивать водород и другие легкие элементы, а затем также кремний и кислород, то она перестанет существовать как планета и превратится просто-напросто в рой железо-никелевых метеоритов.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука