Читаем Вид с высоты полностью

Обратимся еще раз к кинетической энергии молекул. Элементарная физика учит, что кинетическая энергия Е движущейся частицы равна 1/2mv2, где m — масса частицы, a v — ее скорость. Решив уравнение Е = 1/2mv2 относительно v, мы получим

 (1)

Но количество кинетической энергии, как я уже упоминал, можно измерить температурой T. Поэтому в формуле (1) можно вместо Е поставить Т (я также изменю постоянную, чтобы получилось правильное число в тех единицах измерения, которыми нам предстоит пользоваться). Итак,

 (2)

Если в этой формуле температуру Т брать в градусах Кельвина, а массу частицы m — в атомных единицах масс, то средняя скорость частиц v получится в километрах в секунду.

Рассмотрим, например, некий объем газообразного гелия. Он состоит из отдельных атомов гелия, причем масса каждого из них равна 4 в атомных единицах. Пусть его температура равна температуре таяния льда (273°К). Тогда в формуле (2) на место Т станет число 273, а на место m — число 4. Подсчитав результат, мы узнаем, что средняя скорость атомов гелия при температуре таяния льда равна 1,31 км/сек.

Так же вычисляются скорости при других значениях Т и m. Скорость молекул кислорода (масса равна 32) при комнатной температуре (300°К) равна , то есть 0,48 км/сек, скорость молекул двуокиси углерода (масса 44) при температуре кипения воды (373°К) равна 0,46 км/сек и так далее.

Формула (2) говорит нам, что при любой данной температуре чем легче частица, тем быстрее она движется. Она также показывает, что при абсолютном нуле (T = 0) скорость любого атома или молекулы, каковы бы ни были их массы, равна нулю. Это еще один путь убедиться в абсолютности абсолютного нуля. Абсолютный нуль — это точка абсолютного (почти абсолютного) покоя атомов и молекул.

Но если нулевая скорость молекул и атомов — нижний предел температуры, то нет ли у нее и верхнего предела? Разве скорость света, о чем мы уже говорили в начале статьи, не является верхним пределом скорости? Когда температура поднимается так высоко, что v в формуле (2) достигнет скорости света и уже не сможет подняться выше, разве мы не достигнем абсолютной вершины, где настолько горячо, что уж горячее быть не может? Давайте предположим, что так и есть, и посмотрим, что из этого получится.


* * *


Перепишем формулу (2) так, чтобы можно было подсчитывать прямо. У нас получится

T = 40mv2. (3)

Коэффициент 40 нужно брать только в том случае, когда мы пользуемся шкалой Кельвина для температуры и километрами и секундами для скорости.

Возьмем величину скорости молекул v сразу равной максимальной возможной скорости, то есть 299 779 км/сек — скорости света. Тогда мы получим, по-видимому, максимально возможную температуру (Tмакс).

Тмакс = 3 600 000 000 000 m. (4)

Но теперь нужно знать величину m (массу частиц). Чем выше значение m, тем выше максимальная температура.

А при температурах, исчисляемых миллионами градусов, все молекулы и атомы рассыпаются, остаются голые ядра. При температурах в сотни миллионов градусов уже возможны реакции слияния простых ядер в сложные. При еще более высоких температурах должен происходить обратный процесс: все ядра должны развалиться на простые протоны и нейтроны.

Итак, надо думать, что где-то около максимально возможной температуры (а она, по-видимому, лежит далеко за триллионом градусов) существуют только свободные протоны и нейтроны. Их массы в атомной шкале равны единице. Таким образом, с точки зрения формулы (4) мы делаем вывод, что максимально возможная температура равна 3 600 000 000 000°К.

Но действительно ли мы должны принять этот вывод?

Увы, надо признаться, что во всем доказательстве начиная уже с формулы (3) была ошибка. Я предполагал, что значение m постоянно, то есть если уж атом гелия имеет массу, равную 4, то он сохраняет ее неизменной при любых обстоятельствах. Вообще так и было бы, если бы взгляды Ньютона на Вселенную были абсолютно правильны. Но в ньютоновской Вселенной нет такой вещи, как максимальная скорость, и, следовательно, температура не может иметь верхнего предела.

В эйнштейновском понимании Вселенной верхний предел скорости установлен, следовательно, есть и надежда определить верхний предел температур, но масса, по Эйнштейну, не постоянна. Масса любого предмета (какой бы ничтожной при обычных условиях она ни была, лишь бы нулевой) растет с повышением скорости, становясь бесконечно большой в пределе при скорости света (коротко это можно записать так: «Масса становится бесконечно большой при световой скорости»). При обычных скоростях, скажем не более нескольких тысяч километров в секунду, масса возрастает настолько незначительно, что добавку к обычной массе покоя учитывают разве что в самых точных расчетах.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука