Читаем Владимир Козьмич Зворыкин полностью

Однако введение одного лишь сканирующего диска еще не решало всей задачи, поскольку не хватало ряда других важных элементов. Почти 40 лет спустя, разработка усилительных электронных ламп для целей радиосвязи и газоразрядных ламп создала предпосылки для реализации телевидения, и рядом изобретателей была продемонстрирована передача телевизионных изображений по радио.

В последующие несколько лет развитие этого направления техники продвигалось быстрыми темпами и, несмотря на трудности, возникавшие в процессе разработок, были получены впечатляющие результаты. Практически все работы проводились с применением механических методов развертки на основе дисков Нипкова, многогранных зеркал, зеркальных винтов и т.п. Такие методы отличались сложностью чисто механического характера, связанной с конструированием прецизионных сканирующих устройств, увеличением числа элементов изображения и особенно с получением достаточной освещенности. Последнее ограничение буквально воздвигло каменную стену, которая не позволяла увеличить разрешение передаваемых изображений и тем самым добиться требуемого качества, что практически исключало всякую надежду на передачу внестудийных сцен, т.е. на достижение истинной цели телевидения.

Чтобы полностью понять причину этой трудности, следует вспомнить, что во всех обычных системах телевидения используется поточечная развертка изображения, при которой на фоточувствительный элемент воздействует свет от той или иной заданной точки лишь в течение очень короткого интервала времени, соответствующего времени освещения одного элемента изображения. Предположим, что для получения изображения высокого качества требуется 70 ООО элементов изображения. При 20 кадрах в секунду это означает, что время передачи одного элемента изображения составляет 1/1 400 000 секунды. С другой стороны, выходной сигнал фотоэлемента, поступающий на усилитель, пропорционален интенсивности света и времени, в течение которого свет воздействует на фотоэлемент. Простой расчет показывает, насколько микроскопичным будет выходной сигнал фотоэлемента при таком числе элементов изображения. Если взять обычную фотографическую камеру с относительным отверстием объектива 1:4,5, то при ярко освещенной внестудийной сцене полный световой поток, падающий на фотопластинку, составит примерно 1/10 люмена. Если фотопластинку, рассчитанную на 70 000 элементов изображения, заменить сканирующим диском и использовать фотоэлемент с чувствительностью 10 микроампер на люмен, то получим фототок от единичного элемента изображения:

Электрический заряд, создаваемый этим током за время развертки одного элемента изображения, равен

Сравнив эту величину с зарядом одного электрона е = 1,5910"19 кулона, найдем, что заряд, накопленный за время сканирования одного элемента изображения, содержит всего 63 электрона. Усиление столь малой энергии связано практически с непреодолимыми трудностями. Если мы теперь сопоставим полученные условия с условиями экспозиции фотопластинки, то увидим, что последние существенно лучше, поскольку в этом случае свет воздействует на все точки пластинки в течение всего времени экспозиции. В студийной обстановке время экспозиции достигает нескольких секунд, а при съемке внестудийных сцен составляет примерно сотую долю секунды, т.е. во много тысяч раз больше, чем в случае сканирования телевизионного изображения. При тех же благоприятных условиях работает и человеческий глаз, который по чувствительности мы считаем идеалом.

Если бы можно было создать телевизионную систему, работающую по принципу глаза, то свет от всех точек изображения воздействовал бы на фоточувствительный элемент все время. Тогда в нашем примере с изображением, состоящим из 70 ООО элементов, выходной фотоэлектрический сигнал от каждой точки был бы в 70 ООО раз больше, чем в обычной системе. Однако поскольку для передачи по одному каналу связи требуется развертка изображения, необходимы какие-то средства для накопления энергии изображения между двумя последовательными моментами сканирования каждой точки.

Автор начал работать над реализацией этой идеи несколько лет назад и нашел несколько решений данной проблемы. Одно из них состояло в использовании специальной электронно-лучевой трубки с мозаичной фоточувствительной структурой, нанесенной на изолированную металлическую пластинку, как показано на рис. 12 из патента, выданного на один из вариантов разработанной системы[17]. Каждый элемент мозаики представляет собой миниатюрный фотоэлемент. Изображение проецируется на мозаику, в результате чего происходит непрерывная эмиссия фотоэлектронов в соответствии с распределением освещенности на поверхности изображения. Заряд, накопленный каждым элементом мозаики, снимается электронным лучом один раз за каждый повторяющийся кадр изображения. Полученные импульсы усиливаются и используются для модулирования интенсивности электронного пучка в приемной трубке, изображение в которой воспроизводится на флюоресцентном экране.

Рис. 12. Передающая трубка со схемой по заявке В.К. Зворыкина 1925 года

Перейти на страницу:

Похожие книги

100 Великих Феноменов
100 Великих Феноменов

На свете есть немало людей, сильно отличающихся от нас. Чаще всего они обладают даром целительства, реже — предвидения, иногда — теми способностями, объяснить которые наука пока не может, хотя и не отказывается от их изучения. Особая категория людей-феноменов демонстрирует свои сверхъестественные дарования на эстрадных подмостках, цирковых аренах, а теперь и в телемостах, вызывая у публики восторг, восхищение и удивление. Рядовые зрители готовы объявить увиденное волшебством. Отзывы учёных более чем сдержанны — им всё нужно проверить в своих лабораториях.Эта книга повествует о наиболее значительных людях-феноменах, оставивших заметный след в истории сверхъестественного. Тайны их уникальных способностей и возможностей не раскрыты и по сей день.

Николай Николаевич Непомнящий

Биографии и Мемуары
Адмирал Ушаков. Том 2, часть 1
Адмирал Ушаков. Том 2, часть 1

Настоящий сборник документов «Адмирал Ушаков» является вторым томом трехтомного издания документов о великом русском флотоводце. Во II том включены документы, относящиеся к деятельности Ф.Ф. Ушакова по освобождению Ионических островов — Цериго, Занте, Кефалония, о. св. Мавры и Корфу в период знаменитой Ионической кампании с января 1798 г. по июнь 1799 г. В сборник включены также документы, характеризующие деятельность Ф.Ф Ушакова по установлению республиканского правления на освобожденных островах. Документальный материал II тома систематизирован по следующим разделам: — 1. Деятельность Ф. Ф. Ушакова по приведению Черноморского флота в боевую готовность и крейсерство эскадры Ф. Ф. Ушакова в Черном море (январь 1798 г. — август 1798 г.). — 2. Начало военных действий объединенной русско-турецкой эскадры под командованием Ф. Ф. Ушакова по освобождению Ионических островов. Освобождение о. Цериго (август 1798 г. — октябрь 1798 г.). — 3.Военные действия эскадры Ф. Ф. Ушакова по освобождению островов Занте, Кефалония, св. Мавры и начало военных действий по освобождению о. Корфу (октябрь 1798 г. — конец ноября 1798 г.). — 4. Военные действия эскадры Ф. Ф. Ушакова по освобождению о. Корфу и деятельность Ф. Ф. Ушакова по организации республиканского правления на Ионических островах. Начало военных действий в Южной Италии (ноябрь 1798 г. — июнь 1799 г.).

авторов Коллектив

Биографии и Мемуары / Военная история