Как Карл Фридрих Гаусс (1777-1855), так и Янош Бойяи (1802-1860) и Николай Лобачевский (1792-1856) приняли существование параллельных прямых и отрицали их единственность: через одну точку, не лежащую на прямой, проходит более одной параллельной прямой. Этим трем математикам удалось вывести достаточный ряд теорем воображаемой геометрии, не столкнувшись ни с абсурдом, ни с каким-либо парадоксом.
Но не ожидали ли они их за углом? Разве можно быть уверенными в том, что пойди они дальше, их выводы не разбились бы о какое-нибудь противоречие? В середине века назрела необходимость в модели этой новой геометрии в рамках евклидова учения, чтобы даже в случае скрытого в ней противоречия она так же оставалась частью почитаемой евклидовой геометрии (что казалось невозможным). С этой позиции можно было раз и навсегда доказать, что справедливость новой геометрии заключается именно в справедливости евклидовой геометрии, которая считалась надежной. Поставленную задачу частично решил Эудженио Бельтрами (1835-1900), предложив в 1868 году локальную модель — псевдосферу. Через два года Клейн открыл первую полноценную модель неевклидовой геометрии.
Письмо, отправленное Фаркашем Бойяи своему сыну Яношу после того, как он узнал, что тот работает над пятым постулатом Евклида
Рассмотрим модель Клейна. Допустим, что наше пространство свелось к внутренности круга (за исключением его краев), и создадим что-то вроде словаря, в котором будет установлено поочередное соответствие ряда терминов — как в обычном двуязычном словаре, в котором значение слов то же. Когда Евклид говорит: «точка», мы думаем о точках внутри этого круга, когда он говорит: «прямая», подразумеваются отрезки, которые начинаются и заканчиваются на краю круга. Такой перевод позволяет построить модель неевклидовой геометрии внутри собственно евклидова пространства. Что происходит с аксиомой параллельных прямых. При заданной прямой r и не лежащей на ней точке А существует более одной прямой, параллельной r, которая проходит через А. Действительно, прямые s и t параллельны прямой r внутри круга, поскольку они никогда не пересекаются в нашем пространстве (см. рисунок 1). Буквально из ничего была создана новая странная вселенная. Евклид был серьезным образом потеснен.
Сомнения касательно неевклидовой геометрии не рассеялись, даже когда распространились идеи диссертации «О гипотезах, лежащих в основе геометрии», написанной Бернхардом Риманом (1826-1866). В 1854 году он прочитал ее 80-летнему Гауссу, который не скрыл своего энтузиазма в отношении услышанного, однако опубликована эта работа была лишь после его смерти. Основываясь на исследованиях Гаусса в области дифференциальной геометрии, Риман предположил, что в каждом пространстве может быть определена различная форма измерения расстояния, так что прямая в этом пространстве (которая по определению является «самым коротким путем между двумя точками») не совпадает с имеющимися у нас представлениями о ней. Итоговая особенная кривая, так называемая геодезическая, будет играть в этом пространстве роль, которую прямая линия играет в евклидовой геометрии. Согласно Риману, для евклидова пространства характерна постоянная нулевая кривизна, где есть единственная параллельная прямая (см. рисунок 2 [1]). Но если изменить значение кривизны, мы получим другой тип пространства, который окажется моделью неевклидовой геометрии. Если кривизна отрицательная, мы получим гиперболическую геометрию Гаусса — Бойяи — Лобачевского, где через точку, не лежащую на прямой, проходит более одной параллельной ей прямой [2]. И наоборот, если кривизна положительная, мы получим эллиптическую геометрию, в которой нет параллельных прямых [3].
Риман помог истолковать сферу в качестве модели эллиптической геометрии, а следовательно — неевклидовой геометрии, в которой аксиома параллельных прямых ложная, в том смысле, что нет параллельных прямых (как, допустим, в проективной геометрии). В сфере роль прямых берут на себя наибольшие круги. То есть если мы назовем прямыми наибольшие круги, то получим евклидову модель эллиптической геометрии.