11. Исследование квадратичных форм с произвольными алгебраическими коэффициентами.
В блоке алгебры — следующие проблемы.
12. Распространение теоремы Кронекера об абелевых полях на произвольную алгебраическую область рациональности.
13. Невозможность решения общего уравнения седьмой степени с помощью функций, зависящих только от двух переменных.
14. Доказательство конечности некоторых полных систем функций.
17. Представление определенных форм в виде сумм квадратов.
В блоке геометрии...
15. Строгое обоснование исчислительной геометрии Германа Шуберта (1848-1911).
16. Исследование топологии алгебраических кривых и поверхностей, включая (как отсылку к работе Пуанкаре) изучение числа и формы предельных циклов, являющихся решениями некоторых дифференциальных уравнений.
18. Построение пространства на основе конгруэнтных многогранников. Будучи одной из классических проблем математики, известная как проблема паркета или бордюра, она состоит в том, чтобы определить, сколькими различными способами можно целиком заполнить плоскость одинаковыми геометрическими фигурами. Гильберт расширил ее, рассмотрев возможность заполнения пространства конгруэнтными многогранниками (см. рисунок). Так что речь шла об обобщении уже произведенного исследования групп симметрии и замощений (многие из них представлены в мозаике архитектурного ансамбля Альгамбры) двумерной плоскости до случая трехмерного пространства. Промежуточные достижения в этой области пришлись на 1910 год и принадлежат Людвигу Бибербаху (1886-1982) — математику, который в итоге присоединился к нацистской партии и сместил Гильберта. Кроме того, в этот раздел Гильберт включил знаменитую гипотезу Кеплера: какое расположение шаров одного радиуса оставляет меньше всего свободного пространства? Решение Кеплера — расположить их подобно апельсинам в корзине, как совсем недавно продемонстрировал Томас Хейлс (р. 1958).
И наконец, в блоке, посвященном анализу, находились последние пять проблем.
19. Изучение аналитичности решения регулярных задач вариационного исчисления.
20. Изучение существования решений задач вариационного исчисления с определенными граничными условиями.
21. Доказательство существования линейных дифференциальных уравнений с заданной группой монодромии.