Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Мало того, к синтаксическим ограничениям, которые открыл Гёдель, присоединилось другое ограничение — семантическое, формальных систем первого порядка: теорема, сформулированная Леопольдом Лёвенгеймом (1878-1957) и Туральфом Скулемом (1887-1963) около 1920 года (Скулем вернулся к ней в 1933 году). В 1930 году в рамках своего доказательства полноты логики первого порядка Гёдель мимоходом доказал, что любая непротиворечивая теория первого порядка имеет модель, в которой аксиомы проверяются, хотя и ничего не добавил о том, какие характеристики имеет эта модель и как ее построить. Лёвенгейм и Скулем до этого заметили, что любая непротиворечивая формальная система первого порядка имеет, по сути, счетную модель. Это порождает парадокс Скулема: если ZF непротиворечиво, то оно обладает счетной моделью. То есть несчетный континуум, которым мы намереваемся оперировать в ZF, может относиться к счетному множеству вне ZF. Теория действительных чисел, от которой мы ждем знакомой несчетной модели («настоящие» действительные числа), также имеет счетную модель.

ТЕОРЕМА ТАРСКОГО О НЕВЫРАЗИМОСТИ ИСТИНЫ

Альфред Тарский (1902-1993) считал себя лучшим из живущих математических логиков с ясным умом (чтобы избежать сравнения с Гёделем, страдавшим маниями и навязчивыми идеями).

В 1939 году этому польскому ученому удалось переехать в США и на несколько десятилетий превратить университет Беркли в мировую столицу математической логики. Он любил работать ночью и увлекался психотропными средствами, которые помогали ему бодрствовать и трудиться без устали, а также имел репутацию Казановы.

Тарский знаменит тем, что в 1933 году опубликовал огромную статью, в которой дал формальное определение истине и таким образом обозначил начало теории моделей. Если Гильберт в своей теории доказательства прояснил синтаксическое понятие формального доказательства, Тарский сделал то же самое с семантическим понятием истины.

Альфред Тарский, 1968 год.

Еще одна ограничительная теорема

Перейти на страницу:

Похожие книги