Ажиотаж вокруг искусственного интеллекта и его применения в классическом бизнесе не утихает, но многие компании до сих пор не понимают, какую реальную выгоду принесет им внедрение новых технологий в их бизнес-процессы.Эксперт в области аналитики и больших данных, преподаватель в Гарвардской школе бизнеса Томас Дэвенпорт в своей книге покажет, как можно эффективно интегрировать ИИ и когнитивные технологии в текущую бизнес-стратегию предприятия, чтобы сделать продукты привлекательнее, процессы совершеннее, а компанию успешнее.Он подробно рассматривает преимущества и сложности внедрения различных видов технологий: статистическое машинное обучение, нейронные сети, глубокое обучение, обработку естественного языка, экспертные системы на основе правил, роботов и роботизированную автоматизацию процессов. И приводит примеры как успешного, так и неудачного использования ИИ в разных компаниях: Amazon, Google, Facebook, GlaxoSmithKline, Uber, GE, цифровом банке DBS и др.
Менеджмент / Финансы и бизнес18+Томас Дэвенпорт
Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности
Переводчик
Главный редактор
Руководитель проекта
Корректоры
Компьютерная верстка
Художественное оформление и макет
Предисловие
Я давно интересуюсь искусственным интеллектом. В 1986 г. я возглавлял исследовательский центр по управлению технологиями PRISM (Центр партнерских исследований в области управления информационными системами). Работая в тесном сотрудничестве с ныне покойным профессором Массачусетского технологического института и гуру реинжиниринга бизнес-процессов Майклом Хаммером, в тот год мы исследовали множество тем, но одна из них заинтересовала меня особенно. Она называлась «Экспертные системы: перспективы и раннее развитие» и затрагивала быстрорастущую область искусственного интеллекта (ИИ) – так раньше называли сегодняшние когнитивные технологии. Экспертные системы были технологией ИИ, которая волновала бизнес в то время в наибольшей степени.
У PRISM было около 50 крупных корпоративных спонсоров, многие из которых тестировали пилотные версии экспертных систем. Казалось, технология вот-вот расцветет. Тогда я работал в районе Кендалл-сквер в Кембридже, Массачусетс, и там только и разговоров было, что об ИИ. Моя компания Index Systems преимущественно оказывала консалтинговые услуги, однако мы только что запустили стартап Applied Expert Systems (Apex), чтобы разработать экспертную систему для финансового планирования. Рядом с нами работала открытая MIT Лаборатория информатики и ИИ (CSAIL), которая существует и сегодня. На той же улице находилась штаб-квартира компании Symbolics – пионера в создании специализированных лисп-машин (лисп – язык программирования, хорошо подходящий для применения в сфере ИИ). Хоть это и не относится к делу, я помню, как 15 марта 1985 г. прочитал, что Symbolics только что зарегистрировала первый интернет-домен – Symbolics.com.
Десятки лет я интересовался технологиями и их применением в различных компаниях. В 1990-х и начале 2000-х гг. я в основном работал в сфере менеджмента и аналитики знаний (с конца 1990-х), в то время как ИИ переживал одну из «зим», характеризующихся низким коммерческим интересом к теме. Однако я все равно с любопытством следил, как ИИ используется в бизнесе. В тот период доминировала технология процессоров правил, и некоторые компании (включая Accenture, где я руководил исследовательским центром) зарабатывали на создании и использовании таких процессоров. Мы с моей коллегой по Accenture Джинн Харрис решили их изучить. В 2005 г. мы опубликовали статью «Автоматизированное принятие решений вступает в эпоху зрелости», где описали компании (по большей части из сферы финансовых услуг), которые извлекали значительную выгоду из этой технологии. Но эта статья не положила «зиме» конец. Если верить Google Scholar, по цитируемости она занимает 86-е место из всех моих публикаций – лишь 99 смельчаков отважились упомянуть о ней в печати!