— Слушай дальше: положение, или постулат, о параллельных принимается у Евклида за аксиому, однако, так как оно не кажется столь же очевидным и столь же простым, как другие аксиомы Евклида, то на протяжении долгих веков не прекращались попытки доказать этот постулат так, как доказывают теорему. Между прочим, одна из этих попыток — разумеется, не более удачная, чем все остальные — принадлежит автору «Альмагеста», Птолемею, который был незаурядным математиком. Однако теперь мы знаем, что большинство этих попыток свелось к тому, что допущение Евклида о параллельных бессознательно заменялось либо допущением о возможности построить подобную фигуру, либо допущением о том, что сумма углов треугольника есть величина постоянная и равна двум прямым. Существует, правда, кроме этих, еще несколько равнозначных положений, но их уж я касаться не буду. Наконец, все эти работы повели к тому, что геометры заметили (после работ Лобачевского) связь этих положений друг с другом и убедились, что «доказать» этот постулат Евклида невозможно. Однако этот постулат — или одно из перечисленных мной допущений — является необходимым, без него нельзя построить евклидову геометрию. До Лобачевского очень
— 264 —
многие полагали, что никакой другой геометрии, кроме евклидовой, не только нет, но и не может существовать. Мнение это было общепринятым. Иные утверждали, что евклидова геометрия есть наша «естественная» геометрия, которую человек всасывает чуть ли не с молоком матери. Но крупнейший немецкий математик Карл Гаусс на это возразил: «Мы не имеем права путать то, что нам кажется странным, с тем, что и на самом деле невозможно». Лобачевского на его труды натолкнули такие соображения: чтобы убедиться в том, что нет возможности доказать постулат Евклида о параллельных, следует попробовать построить геометрию, где бы этот важный постулат был вообще отброшен. Ход размышлений Лобачевского ты легко можешь усвоить, вспомнив, как доказываются геометрические теоремы «от противного». Мы, вместо того чтобы искать прямое доказательство, делаем противное допущение, и тогда, если в конце наших рассуждений мы сталкиваемся с противоречием, это опровергает наше противное допущение, тем самым подтверждая и доказывая то прямое положение, доказать которое нам и было нужно. Если постулат о параллельных необходим, то (так рассуждал наш великий геометр), мы, отбросив его, не сможем получить строгой системы геометрии и неминуемо придем к логическим противоречиям.
И таким образом мы проверим и необходимость и справедливость пятого (таков его порядковый номер в «Началах» Евклида) постулата. И вот Лобачевский строит новую геометрию, «воображаемую» геометрию, как он сам ее называл, где вместо постулата Евклида вводится иной, утверждающий, что из одной точки можно провести не одну, а две параллельные линии к данной. Наконец он получает результаты своего изумительного прилежания и труда, и решение этой задачи пятого постулата. Но решение это оказалось таким, которого не ожидал и к которому не был готов почти никто из современных математиков, не говоря уже о философах, а еще менее о людях, не имевших специальных математических или философских знаний. Первое, к чему пришел Лобачевский, было утверждение, что пятый постулат никоим образом из всех иных положений геометрии выведен быть не может, а следовательно, его невозможно доказать как теорему, опираясь на иные, ранее доказанные положения или допущения. Однако гораздо более важным оказалось то, что Лобачевский, развив свою новую геометрию до тех же пределов, до которых развил свою геометрию Евклид, нигде ни с какими противоречиями не встретился. Дальнейшие работы очень крупных математиков в конце прошлого века раскрыли этот вопрос до конца и полностью подтвердили выводы Лобачевского. А важнейший вывод «воображаемой» геометрии гласит следующее:
— 265 —
потому-то и невозможно доказать пятый постулат Евклида, что наряду с евклидовой геометрией может существовать иная, где этот постулат не имеет силы!
— Ну, а как же люди примирились с этой странной геометрией, которая сначала всем не нравилась?