— По теореме Виеты выходит. И сумма корней равна нулю! Попробую проверить значения корней. Для этого я буду придавать иксу целочисленные значения от минус шести до плюс шести и посмотрю, где кривая пересечет ось абсцисс.
Илюша так и сделал. Получилась табличка, а за ней и кривая, которую можно разглядеть на чертеже[38]
.x | x3 | - 15x | Свободый член | Сумма |
- 6 | - 216 | + 90 | - 4 | - 130 |
- 5 | - 125 | + 75 | - 4 | - 54 |
- 4 | - 64 | + 60 | - 4 | - 8 |
- 3 | - 27 | + 45 | - 4 | + 14 |
- 2 | - 8 | + 30 | - 4 | + 18 |
- 1 | - 1 | + 15 | - 4 | + 10 |
0 | 0 | 0 | - 4 | - 4 |
+ 1 | + 1 | - 15 | - 4 | - 18 |
+ 2 | + 8 | - 30 | -4 | - 26 |
+ 3 | + 27 | - 45 | - 4 | - 22 |
+ 4 | + 64 | - 60 | - 4 | 0 |
+ 5 | + 125 | - 75 | - 4 | + 46 |
+ 6 | + 216 | - 90 | - 4 | +122 |
— 439 —
— Ишь как хорошо вес выходит! — воскликнул Илюша, закончив табличку. — На четверке нуль…
— Сделаешь верно, и получается хорошо, — заметил Радикс.
— А те два других корня по чертежу тоже очень хорошо подходят. В порядке! И действительно, кривая три раза пересекает ось абсцисс.
— Как ей и положено, — закрепил Радикс. — Рафаэль Бомбелли был человек способный, ученый и даже удачливый: говорят, именно ему удалось разыскать на полках громадной Ватиканской библиотеки рукопись творений грека Диофанта Александрийского, с которых и началась теория чисел, высшая арифметика. Возможно, что Диофант в решении с Кардановой формулой навел Рафаэля Бомбелли на кое-какие полезные мысли.
Тут Радикс продекламировал такой стишок:
— Там, где быть им надлежит, там как раз и пробежит! — поддакнул Мнимий.
Радикс проговорил скороговоркой еще стишок:
И все весело рассмеялись. А Мнимий добавил:
— Надо вам знать еще, что неожиданные и своеобразные разоблачения Бомбелли в те времена скорее привели в недоумение ученых, чем направили их к новым исследованиям. И когда через некоторое время Виета обнаружил, что «неприводимый» случай Кардана можно разрешить тригонометрическим путем (как решение задачи о трисекции угла), то это, наверно, показалось облегчением (впрочем арабские математики нашли это решение примерно еще за целый век до Виеты). Однако трудно сказать, имело ли это какое-нибудь значение, ибо замечательная работа Бомбелли в свое время не была напечатана, хотя была известна и ее изучали крупные ученые. Любопытно, что в те времена были уверены, что
— 440 —
Виета открыл что-то совершенно новое, хотя на самом деле в решении Виеты новыми были только подстановки.
— Но я не знаю, как у Виеты получилось с трисекцией угла и с тригонометрическим решением.
— Неужто? — удивился Радикс. — Так сейчас узнаешь! Виета напал на счастливую мысль привлечь к вопросу о решении кубического уравнения тригонометрические функции. Мы как будто в прошлой схолии рассматривали, что получается, если возвести комплексное число в квадрат. Из этого примера ясно, кстати, что одно равенство комплексных чисел равносильно двум равенствам действительных, ибо действительную и мнимую часть правой части равенства можно рассматривать по отдельности. Согласен?
Илюша задумался.
— Кажется… да!
— Если так, то мы начнем с формулы для косинуса двойного угла. Так или нет? Помнишь?
— Так, как будто. И она будет:
cos 2
— Хорошо. Не спорю. А теперь перемножение комплексных чисел (единичных комплексных векторов) из предыдущей схолии повторим еще раз с тем отличием, что наши комплексные множители будут иметь разные аргументы, то есть разные углы. Что мы получим?
Илюша тотчас выполнил это умножение и получил.
cos (
— Ну, а теперь у нас есть все для того, чтобы на основании этих двух формул написать еще формулу для косинуса троекратного угла, то есть для cos (2
На этот раз Илюша не очень долго возился, но все-таки помучился. Радикс напомнил ему, что ведь «без труда и рыбку не вытащишь из пруда», а не то что косинус троекратный!
И наконец получилась вот какая формула:
cos З
— Вот теперь все, что надо, у нас есть, и мы можем спокойно продолжать наши рассуждения. Попрошу вас только еще заменить cos
— 441 —
Это задание было совсем уж простое, и Илюша написал.
4
— Так ведь это получилось кубическое уравнение и как раз такое, какое мы получали, когда уничтожили член с неизвестным во второй степени.