— Именно в этом роде. Но вот далее нас и подстерегает разочарование. В 1799 году итальянский врач и математик Руффини, занимаясь систематическим изучением перестановок, нашел и доказал теорему, что от пяти элементов (у которых будет сто двадцать перестановок) не существует таких функций, которые имели бы четыре или три значения. А если так…
— Значит, степень уравнения нельзя понизить?.. — воскликнул Илюша.
— Выходит, — ответил Мнимий, — что дальше уж нельзя.
С уравнением пятой степени было не просто полторы тысячи неудач, а нечто более серьезное: оказалось, что в этом роде задача не только не имеет решения, но и иметь не может. В работе Руффини еще не все было очень гладко, а через сравнительно короткий срок гениальный молодой математик норвежец Абель дал безупречное доказательство положениям Руффини. Затем Абель нашел еще новые подробности насчет алгебраических уравнений. Коротко это можно так изложить: если уравнение таково, что между его корнями существуют некоторые сравнительно несложные отношения, его можно решить в радикалах. Но, к сожалению, для уравнений выше четвертой степени такие свойства имеют многие отдельные виды уравнений, но отнюдь не все. Вскоре этой задачей занялся гениальный юный француз Эварист Галуа, погибший
— 457 —
на поединке с наемным убийцей, подосланным подлой полицией тогдашнего реакционного французского правительства. В ночь перед трагической гибелью юный математик набросал свою работу. А она увидела свет только через четырнадцать лет после того, как ранняя могила поглотила этого замечательного юношу. Ему было всего двадцать лет…
— А его работа была очень сложная?
— Даже весьма сложная! — отозвался Мнимий. — Многие вопросы и решения снова оказались связанными с той же самой симметрией, но в еще более хитроумном виде по сравнению с тем, о чем мы уже говорили. Введены были и некоторые новые крайне важные общие понятия, сыгравшие свою роль не только в алгебре, но обогатившие и другие разделы нашей науки. Самый процесс постепенного упрощения уравнений был изучен во всей сложности. Для целого ряда, казалось бы, неодолимых препятствий были придуманы обходные хитрые пути, а затем и они сами подверглись исследованию, изучению, так что весь этот раздел математики сам превратился в исследование того, как именно строятся методы решения задач и на чем они в сущности своей основаны. Методы Галуа дали результаты удивительные и неожиданные: если мы сейчас не только убедились на опыте, но и знаем, что с помощью линейки и циркуля невозможно решить кубическое уравнение, то доказано это было в точности только после Галуа. Уравнения любой степени, у которых все коэффициенты при неизвестном в любой степени вплоть до нулевой (то есть, значит, до свободного члена) равны единице — а это и есть общее уравнение деления круга (с одним из них мы познакомились в предыдущей схолии), — всегда решаются, потому что они могут быть сведены к целой цепи уравнений низших степеней. Это опять же до конца разъясняется тем же Галуа. Однако я могу привести только отдельные примеры, хотя и они очень убедительны. В этом направлении наука сделада гигантские шаги. И чем дальше ученый забирается в глубь строения своих методов, тем меньше ему служит то, что можно сразу охватить наглядно. Поэтому вопросы рассуждения, то есть логики, получают все большее и большее значение. Ну вот! Это приблизительно все, что мы способны вам рассказать из этой удивительной, но крайне трудной и весьма отвлеченной области науки[40]
.— Да, все-таки очень сложные формулы! — вздохнул Илюша.
— 458 —
— Да ими и не пользуются, — отвечал Мнимий, — имеются гораздо более доступные средства в дифференциальном исчислении.
— Ну-с, молодой человек, — выговорил степенно Радикс, — голова на месте?
— Кажется, на месте, — отвечал Илюша. — Трудно ужасно, так длинно!..
— Не так еще ужасно! — отвечал преспокойно Радикс. — А ты, кстати, видел, какую траекторию в пространстве описал тот советский спутник, который умудрился снять фотографию Луны с той ее стороны, которую с Земли не видно? Как ты полагаешь, очень легко было ее вычислить?.. Ну, а громадные турбины на гидростанциях, их рассчитать просто? А скоростные и высотные самолеты? А счетные электронные машины? Ведь это все необходимые и неизбежные устройства в нашем веке! А расчеты, касающиеся атома и всего его строения, так это еще во много-много раз труднее. Но люди, твои современники, одолевают! Да еще каждый день и каждый час идут вперед… Так что хочешь не хочешь, а поспевать всюду надо!
— Конечно, — покорно пробормотал Илья, — я ведь не спорю…
— Тогда чем же ты недоволен?
— Мне ужасно обидно, что я все-таки самого главного не понимаю! Не понимаю, и все!
— Ишь какой сердитый! — заметил Радикс. — Из-за чего ты так раскипятился?
Илюша даже раскраснелся от волнения.
— Не могу поверить, чтобы эти Мнимии были просто открытием. По-моему, они в то же время еще и чье-то изобретение…