а затем применить к такому выражению всем известную формулу, для решения квадратного уравнения, то как раз и придешь к твоей формуле. И действительно, она показывает, как формула решения связана с корнями. Но ведь в квадратном уравнении все так просто!
— Боюсь, — вымолвил Мнимий, — что вас пугают эти самые альфы в формуле Лагранжа. Не так ли? А ведь мы о них недавно говорили… Вспомните-ка!
— Говорили…
— А что именно?
— Что с их помощью получаются все значения корней из комплексного числа…
— Разве? — сказал удивленный Радикс. — Как же это возможно? Мыслимое ли это дело?
Илюша посмотрел на своего друга укоризненно.
Что-то очень маленькое и беленькое вдруг упало у ног Илюши, а потом пошел целый снег из этих маленьких беленьких… Одна штучка упала Илюше прямо на руку, и он увидал, что на ладошке у него лежит крохотная беленькая альфа. А кругом так и сыплются все новые и новые маленькие беленькие альфы…
А Мнимий посмотрел на эту альфообразную метель и признался:
— А ведь в самой своей сущности я тоже альфа!
Илюша взглянул на него и сказал:
— Когда мы разбирали пример Бомбелли, я, кажется, понял, что под корнями в формуле Кардана стоят сопряженные комплексные числа… Ну вот, отсюда и альфы, чтобы получать один за другим все значения корня из комплексного числа! Теперь я как будто разобрался. Значит, Лагранж дал
— 450 —
формулу Кардана не просто в виде результата двух подстановок, а так, как она складывается из самых корней.
И тут альфовый снежок стал стихать.
— Так-с… — произнес наставительно Мнимий. — Это похоже на дело. Но теперь на минутку давайте снова вернемся к квадратному уравнению. Вы этого не бойтесь! Поверьте, что все те крупные ученые, которые это разбирали, тоже не раз вспоминали о квадратном уравнении. Так вот вам еще один вывод для формулы решения квадратного уравнения, причем чрезвычайно полезный. Нам ведь хорошо известно, что по формулам Виеты сумма корней квадратного уравнения (
Возьмем еще одно выражение, составленное из тех же корней, только не сумму, а разность, и возведем ее в квадрат:
(
Отсюда сразу можно написать, что
Сложим эти два равенства и сейчас же получим известную формулу решения квадратного уравнения. Не так ли?
— Так, конечно, — отвечал Илюша. — Из суммы этих выражений один корень получаем, а из их разности — другой. Все понятно. Выходит, что мы этим способом получили два уравнения первой степени. Раз нам нужно два решения, то мы можем к ним прийти через два уравнения первой степени… То есть я не знаю, всегда ли так должно получаться, но во всяком случае с квадратным уравнением именно так и получается…
— Допустим… — отвечал Мнимий. — Но лучше сказать, пусть так будет вплоть до первого противоречия с этим предположением либо допущением.
— А если встретится противоречие?
— Тогда посмотрим. Попробуем его обойти, а если не удастся, придется видоизменять наше допущение. Когда Лагранж, пытаясь обнаружить общее правило из разных решений алгебраических уравнений, нашел наконец свою замечательную формулу, он заметил, что три корня в ней надо брать в некотором вполне определенном порядке, а это на-
— 451 —
толкнуло его на новые плодотворные опыты. Если взять все три корпя кубического уравнения, то есть
— Интересно, — заметил Радикс, — а сколько будет этих всех остальных?
И оба, Радикс и Мнимий, внимательно посмотрели на нашего героя, Илью Алексеевича.
— Остальных последовательностей корней? — неуверенно повторил мальчик. — Не понимаю вопроса… Или, может быть, о порядке вы говорите? Тогда вы меня о перестановках спрашиваете?..
Не отвечая ни слова, Радикс и Мнимий все так же пристально смотрели на Илюшу, который чувствовал себя под их взглядами не в своей тарелке.
— … и уж если это так, — в полной неуверенности продолжал он, — то раз всего три корня, то, как их ни переставляй, выйдет только шесть различных последовательностей. И все.
Опять полная тишина. Вдруг Илюша почувствовал, что в его левой руке оказалась маленькая коробочка, и действительно, это был просто самый маленький Дразнилка с тремя шашками. Только на шашках были изображены символы корней:
Илюша начал машинально двигать шашечки, но ничего нового или интересного не обнаружил. Да, действительно, всего получалось шесть перестановок! Но он это давно знал:
(
затем опять получается то же самое. А если переставить две шашки, ну, скажем,
(
а потом снова то же.
— Шесть, — согласился Мнимий, — спору нет. Но вам пришлось однажды что-то менять в первом расположении. Это как надо понимать?
— 452 —