Читаем Воображаемая жизнь (ЛП) полностью

Кислород, которым мы дышим, образовался в результате фотосинтеза, в ходе которого растения используют солнечный свет для преобразования воды и углекислого газа в углеводы. Ультрафиолетовый свет Солнца расщепляет биологический молекулярный кислород — два атома кислорода, тесно связанных друг с другом, — на отдельные атомы кислорода. Затем они вступают в реакцию с молекулярным кислородом с образованием озона (O3). При дыхании и разложении организмов образуется углекислый газ — в противоположность процессу фотосинтеза. Другие газы, вроде сероводорода, выделяют сине-зелёные водоросли. А некоторые виды бактерий, как уже говорилось выше, выделяют метан. Жизнь «проявляет» себя в составе земной атмосферы. Мы называем эти произведённые биологическим путём химические вещества биомаркерами или биосигнатурами жизни на Земле.

Можно подумать, что было бы легко просто найти такие химические вещества в атмосферах экзопланет с использованием техники спектроскопии, чтобы установить, есть ли там жизнь. Но при таком подходе мы сталкиваемся с тремя сложностями.

Первая сложность заключается в том, что экзопланеты светят чрезвычайно слабо для нашего зрения. Мы замечаем их по свету, который они отражают от центральных звёзд своих систем. На расстояниях, огромных даже в случае ближайших к Земле звёзд, обнаружить свет, отражённый планетой, невероятно сложно. Однако в последние несколько лет астрономы пользовались высокочувствительными детекторами, а также кое-какими довольно хитроумными стратегиями, для изучения света, отражаемого множеством экзопланет. Самая успешная стратегия состоит в том, чтобы исследовать свет звезды, когда планета находится позади неё, а затем исследовать их смешанный свет, когда экзопланета находится перед звездой. Вычитание первого из второго даёт совокупность частот излучения экзопланеты, которую мы называем её спектром.

Вторая сложность заключается в определении характерных следов конкретных молекул, которые находятся в спектре экзопланеты. Как отмечалось выше, каждый химический элемент и молекула обладают уникальным световым «отпечатком». Но чаще всего уникальная характеристика света, которая идентифицирует биомаркер, составляет лишь очень небольшую часть общего спектра экзопланеты. Это означает, что нам нужно собрать много света от экзопланеты, для чего обычно требуются большие телескопы.

Третья сложность — самая значительная. Как нам решить, какие биомаркеры действительно доказывают наличие жизни на экзопланете? Как уже обсуждалось выше, жизнь производит или изменяет большинство газов в атмосфере Земли, поэтому поиск таких же газов в атмосферах планет вокруг далеких звёзд, чтобы определить, какие из них демонстрируют наличие жизни, показался бы простым делом. Но, как обычно, всё не так просто.

Проблема состоит в том, что небиологические процессы могут привести к образованию практически любой молекулы, которую мы считаем биомаркером в атмосфере Земли. Возьмём, например, кислород. Ультрафиолетовый свет Солнца разрушает молекулы воды в атмосфере, высвобождая атомы кислорода, которые могут рекомбинировать, образуя молекулярный кислород. Таким образом, хотя значительная часть молекулярного кислорода образуется в результате фотосинтеза, не весь он образуется таким способом. Или взглянем на метан. Как мы уже отмечали выше, его можно получить различными способами, и многие из них не связаны с биологией. То же самое можно сказать и о сероводороде (который обладает характерным запахом тухлого яйца), который вырабатывается серовосстанавливающими бактериями, процветающими в экстремальных условиях на Земле — но также в результате вулканических процессов. Мы могли бы продолжить, но суть ясна: практически для каждой молекулы, которую мы могли бы идентифицировать как потенциальный биомаркер жизни на экзопланете, существует небиологический механизм формирования.

Некоторые учёные подумывают об использовании комбинаций молекул, полученных биологическим путём, для установления присутствия жизни. Возьмём в качестве примера кислород и метан. На Земле концентрация метана нестабильна, потому что он окисляется (сгорает) в атмосфере. И всё же он явно присутствует, потому что биология быстро производит его параллельно кислороду. Если бы мы отключили всю биологию на Земле, наша атмосфера потеряла бы свой метан всего за несколько десятков лет. Кислород сохранялся бы примерно несколько тысяч лет, если бы вся жизнь прекратилась, но он тоже в конечном итоге исчез бы, поскольку включился бы в состав минералов. Таким образом, присутствие и кислорода, и метана вместе может служить биомаркером, даже если присутствие любого из этих газов, взятого отдельно, таковым не будет.

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов

Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.

Юрий Михайлович Батурин

Астрономия и Космос / История / Образование и наука