Читаем Воображаемая жизнь (ЛП) полностью

Как отмечалось в предыдущей главе, присвоение имён экзопланетам — это странное дело. Оно начинается с указания звезды, затем каждой из экзопланет вокруг неё присваивается буква в порядке открытия, причем буква A зарезервирована для самой звезды. Таким образом, Gliese 1214 b является первой планетой, обнаруженной на орбите 1214-й звезды по каталогу ближайших к нам звёзд, составленному Вильгельмом Глизе. (Возможно, вы помните, что в главе 12 мы обсуждали Gliese 876 d.)

Звёзды из числа красных карликов невелики — обычно их масса не превышает 30 процентов от массы нашего Солнца. Они составляют почти 40 процентов звёзд в нашей галактике и, следовательно, вполне могут быть самым распространённым типом светил, вокруг которых вращаются планеты. Для наших целей важнейшей особенностью красных карликов является то, что они проявляют значительную звёздную активность (солнечные пятна и солнечные бури), и потому время от времени купают свои планеты в интенсивных потоках ультрафиолетового и рентгеновского излучения.

Gliese 1214 находится примерно в 42 световых годах от Земли. Её масса достигает примерно одной шестой массы нашего Солнца, а температура поверхности составляет около 4900°F (2700°C). Возраст системы Gliese 1214 оценивается в 6 миллиардов лет, или примерно на 30 процентов старше нашей Солнечной системы.

Gliese 1214 b — суперземля с массой, примерно в 6,55 раз превышающей массу Земли. Однако её плотность составляет лишь около трети от плотности нашей планеты — ненамного больше плотности воды. Таким образом, у Gliese 1214 b, скорее всего, есть небольшое ядро из металла и камня, но мантия состоит в основном из воды, как у мира, который мы назвали Нептунией в главе 8.

Поскольку средняя плотность экзопланеты является таким важным показателем её структуры, стоит сделать небольшое отступление, чтобы объяснить, как её можно рассчитать. Радиус планеты (и, следовательно, её объём) можно определить по величине затемнения, наблюдаемого, когда планета проходит перед своей родительской звездой. Массу планеты можно определить, измерив, насколько сильно её гравитация притягивает звезду. Поскольку плотность — это просто масса, поделённая на объём, при помощи этих двух измерений мы можем рассчитать плотность планеты. Результат для Gliese 1214 b: плотность примерно в 1,87 раза больше, чем у воды.

Начав с внешнего слоя водного мира Gliese и двигаясь внутрь, вначале мы встретим воду в виде пара из-за высокой температуры поверхности планеты — она находится очень близко к своей звезде. На поверхности вода будет существовать в виде горячего кипящего океана, глубина которого может составлять, возможно, 70 миль (около 100 км) или более. На более глубоких уровнях, где давление ещё выше, как обсуждалось в главе 7, мы обнаружили бы воду в виде льда. Это даёт образ планеты, который чем-то напоминает луковицу с многочисленными слоями кожицы, в каждом из которых вода находится в фазе, отличной от соседних слоёв. Каждый слой также будет обладать уникальными химическими свойствами, а также собственным типом энергетики, химии и даже «океанографии».

Поскольку Gliese 1214 b состоит в основном из воды, она должна была образоваться достаточно далеко от своей центральной звезды, чтобы у неё была возможность удерживать воду, накопленную на этой стадии. То есть, планета должна была образоваться за пределами того, что мы можем назвать снеговой линией звезды — за тем местом, где температура окружающей среды опускается ниже точки замерзания воды. В противном случае её жидкая вода и водяной пар были бы сдуты, как это случилось в ходе формирования планет земной группы в нашей системе, в том числе Земли. Однако по какой-то неизвестной причине Gliese 1214 b не превратилась в газового гиганта наподобие Юпитера или Сатурна. Вместо этого она, видимо, переместилась внутрь, на свою нынешнюю близкую к звезде орбиту, уже после того, как сформировалась.

Это означает, что на протяжении времени своего существования планета испытала огромные изменения количества звёздного света (энергии), который она получала от центральной звезды, а это, в свою очередь, подразумевает, что она пережила эволюцию климата в невиданных на Земле масштабах. Иными словами, атмосфера, которую мы видим сегодня на Gliese 1214 b, — это не та атмосфера, которая была там вначале.

Расчёты показывают, что температура поверхности Gliese 1214 b составляет от 250° до 540°F (от 120° до 280°C). Поскольку гравитация на её поверхности составляет около 90 процентов от земной, атмосфера удерживается на её поверхности так же, как атмосфера Земли удерживается на поверхности нашей планеты. Мы ожидаем, что на Gliese 1214 b будут бури и погодные явления, связанные с низким и высоким давлением. Наконец, анализ её спектра показывает, что у неё есть облачный покров по всей поверхности на очень большой высоте.

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов

Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.

Юрий Михайлович Батурин

Астрономия и Космос / История / Образование и наука