Читаем Воображаемая жизнь (ЛП) полностью

Эти четыре утверждения, обычно написанные на языке математики, играют для электричества и магнетизма ту же роль, что законы Ньютона для механики. Они обобщают всё, что можно знать в этой теме. Мы в очередной раз пришли к ситуации, когда сложный набор природных явлений сводится к немногим очень общим законам.

В нашем анализе жизни на экзопланетах мы не раз будем обращаться к этим положениям, касающимся электричества и магнетизма. Например, в главе 13 мы поговорим о том, как события, которые называются «корональные выбросы массы» — вылетающие из Солнца массивные сгустки ионизированного газа, формирование и движение которых подчиняются этим законам, — могут оказать влияние на среду обитания планеты и в считанные часы уничтожить развитую технологическую цивилизацию на этой планете. Мы также обсудим тот факт, что такая планета, как Марс, в отличие от Земли, лишена магнитного поля, и это позволяет солнечному излучению достигать её поверхности и, возможно, уничтожать там любую имеющуюся жизнь. Эти законы окажутся особенно полезными, когда мы начнём обсуждать развитие жизни, совершенно не похожей на нас, потому что взаимодействие электрического и магнитного полей даёт нам один из способов достичь такого уровня сложности, которую мы наблюдаем у жизни, основанной на химии. Но истинная важность этих утверждений заключается в том, что они дают нам самый полезный из предметов в том наборе инструментов, который направляет наш поиск жизни в иных местах Вселенной и помогает понять естественные ограничения для эволюции жизни на различных экзопланетах.

Вышеприведённые законы обычно называют уравнениями Максвелла в честь шотландского физика Джеймса Клерка Максвелла (1831-79). Хотя он и не открыл ни одного из них, он был первым, кто понял, что они представляют собой всеобъемлющую математическую систему, объединяющую электричество и магнетизм. В своё время Максвелл был ведущим специалистом на переднем крае математики — в тех областях, которые мы сегодня называем дифференциальными уравнениями в частных производных и векторным исчислением. Когда он применил эти инструменты к математическим формам четырёх утверждений, результат оказался поразительным. Уравнения предсказывают, что при ускорении электрических зарядов они должны излучать своего рода волну. Эта волна включала бы колеблющиеся электрические и магнитные поля и распространялась бы в космосе со скоростью, взаимосвязанной с силами, возникающими при взаимодействии между электрическими зарядами и магнитными полюсами — со скоростью, которую возможно было бы рассчитать, потому что эти силы были известны.

Должно быть, Максвелл пребывал в состоянии шока, когда рассчитал эту скорость, потому что она составляет около 186 000 миль в секунду (300 000 км/сек): это скорость света. Фактически свет — это форма того, что мы в настоящее время называем электромагнитным излучением. Таким образом, носок, прицепляющийся к полотенцу, и магниты, удерживающие записки-памятки на дверце вашего холодильника, связаны с тем фактом, что вы можете прочитать эти слова, потому что свет движется от страницы в ваш глаз.

И это ещё не всё. Видимый свет состоит из волн, длина которых варьирует от 4000 до 8000 атомов. Уравнения предсказывают, что должны существовать и другие формы электромагнитного излучения, соответствующие другим длинам волн. Начиная с конца 19 века, эти волны были открыты — если начать с радиоволн и двигаться по электромагнитному спектру, то с одной стороны будут более длинные микроволны и инфракрасное излучение, а с другой — ультрафиолетовое излучение с более короткой длиной волны, рентгеновское излучение и, наконец, гамма-лучи. По мере того как длина волны уменьшается, переносимая волной энергия возрастает. Иными словами, возьмите волну видимого света и растяните её — и вы получите радиоволны. Сожмите её — и у вас будут рентгеновские лучи.

Эти волны несут большую часть информации, которую мы когда-либо сможем получить от экзопланеты. Эти волны движутся к нам со скоростью света. Каждый из типов излучения даёт нам представление о своём виде явлений — например, рентгеновские лучи говорят нам о бурных событиях большой энергии, тогда как инфракрасное излучение рассказывает о событиях, которые происходят при относительно низких температурах. Однако эти волны, за исключением радиоволн и видимого света, как правило, поглощаются атмосферой Земли. Это объясняет тот факт, что именно спутники на орбите вокруг Земли, а не наземные телескопы собирают так много данных, которыми мы воспользуемся далее. Таким образом, электромагнитное излучение, существование которого было впервые описано уравнениями Максвелла, является нашим основным инструментом для исследования условий экзопланет и (как мы увидим в главе 5) нашим основным инструментом для поиска жизни вне Земли.

Термодинамика

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов

Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.

Юрий Михайлович Батурин

Астрономия и Космос / История / Образование и наука