Читаем Воображаемая жизнь. Путешествие в поисках разумных инопланетян, ледяных существ и супергравитационных животных полностью

Квантовая механика очень отличается от теории относительности. Внутри атома физические явления протекают совершенно иначе, не так, как в нашем повседневном бытовом опыте. В мире квантов нет ничего постоянного и непрерывного, и при этом почти все явления взаимосвязаны и влияют друг на друга. И хотя пока ученые не пришли к единому мнению о том, как интерпретировать получаемые в этой странной области знаний результаты, в большинстве случаев мы будем касаться всего нескольких общих принципов, которые тоже можно добавить к нашему списку законов, описывающих устройство Вселенной.

Самые важные для наших целей открытия квантовой механики состоят в том, как она объясняет излучение и поглощение света атомами. В отличие от планет, обращающихся по орбитам вокруг звезд, электроны неспособны занимать любую произвольную орбиту вокруг ядра атома. Их выбор ограничен строго определенными вариантами. Атом испускает электромагнитное излучение (в том числе – видимый свет), когда электрон перемещается с более далекой от ядра орбиты на более близкую. Верно и обратное: атом поглощает излучение, когда электрон перемещается с внутренней орбиты на внешнюю. Частота этого излучения, испускаемого или поглощаемого, – для видимого света она соответствует цвету лучей – зависит от разности энергий на исходной и конечной орбитах. Так возможные положения орбит у атомов одного химического элемента отличаются от их положений у атомов другого, спектр испускаемого или поглощаемого атомом излучения выступает в роли своеобразного «отпечатка пальца», помогая нам распознать присутствие тех или иных атомов. На этом базируется целая область науки, называемая спектроскопией, – мы поговорим о ней в главе 5. Там мы расскажем, о том, как данное частное следствие квантовой механики дает нам прекрасный инструмент для определения возможности жизни возле других звезд.

Итак, представление об устройстве Вселенной сводится к поиску немногочисленных универсальных законов наподобие тех, о которых мы уже говорили выше. Громадное упрощение картины мира, начавшееся с законов Ньютона, дает нам надежду на то, что упрощение того же типа произойдет и в будущем, когда мы лучше разберемся в новых областях физики. Эта надежда ведет современных физиков в их попытках создать то, что (отчасти в шутку) называют «теорией всего». Этот идеал – единое уравнение, из которого можно было бы вывести как все уже перечисленные принципы, так и те, что еще только предстоит открыть. Такая теория, как следует из самого ее названия, объяснила бы все.

Конечно, пока очень далеко от создания подобной теории, а многие серьезные ученые вообще сомневаются в том, что она может существовать. Кроме того, в наших поисках внеземной жизни эта теория нам совершенно не нужна. Но согласитесь, интересно пофантазировать, как может выглядеть техника будущего, основанная на достижениях «теории всего».

<p>Принцип Коперника</p>

Еще один глобальный принцип, который будет указывать нам путь в исследованиях внеземной жизни, тесно связан с именем польского клирика Николая Коперника (1473–1543), прославившегося созданием математической модели Солнечной системы с Солнцем, а не Землей в качестве центра. Это стало первым шагом на долгом пути к пониманию того очевидного для нас сейчас факта, что наша родная планета не представляет из собой ничего особенного и уникального. Это просто каменный шар, обращающийся вокруг совершенно обычной звезды в ничем не примечательной части такой же заурядной галактики – одной из миллиардов галактик в только наблюдаемой части Вселенной. Некоторых людей такой взгляд на Вселенную глубоко огорчает – по их мнению, он каким‐то образом принижает человечество. Мы предпочитаем смотреть на этот шаг на пути познания мира иначе: для нас в осознании заурядности нашей планеты таится драгоценный дар. Ведь из него следует, что законы природы, которые мы открываем сегодня и сейчас, действуют во всей Вселенной и остаются верными во все времена.

Древние греки, первопроходцы на пути человечества к современной науке, представляли себе Вселенную совершенно иначе. В их космологии Земля находилась в центре мироздания и занимала особое, отличное от всего остального мира положение. Вся материя на Земле состояла из четырех элементов: собственно земли, огня, воздуха и воды. В небесах, однако, существовал еще один, пятый, элемент, называемый эфиром или квинтэссенцией. Кроме того, на небесах все было идеальным – небесные сферы несли планеты и звезды по (более или менее) круговым маршрутам, и, в отличие от Земли, небесные тела не имели никакого изъяна. (Таким образом, обнаруженные Галилеем при помощи его телескопа лунные кратеры и пятна на Солнце не умещались в стройную картину аристотелевской космологии.) Другими словами, у древних греков было две системы законов природы – одна действовала на Земле, другая на небе.

Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука