Когда физики рассматривают какую‐то проблему, например определение жизни, их ключевой подход состоит в том, чтобы докопаться до самых базовых законов природы, действующих в исследуемой ими системе, какой бы эта система ни была. Этот метод известен нам по крайней мере со времен Исаака Ньютона, который обнаружил, что движение любого объекта, где бы во Вселенной он ни находился, можно описать тремя открытыми им законами. Как мы уже говорили в предыдущей главе, можно сказать, что цель физики – свести законы бытия Вселенной к системе уравнений, которая поместилась бы на футболке. Таким образом, когда физик думает о жизни на Земле, он вспоминает прежде всего о двух ключевых параметрах: энергии и энтропии. Эти параметры – сфера изучения термодинамики, науки, которая возникла и получила свое развитие в XIX веке. В предыдущей главе мы уже говорили о первом и втором законах термодинамики (не забыли про футболку?), которые можно сформулировать так:
Первый закон: Энергия может принимать множество переходящих друг в друга форм, но не может быть создана или уничтожена. Второй закон: Мера беспорядка в замкнутой системе со временем остается неизменной или растет, но не уменьшается.
Второй закон часто формулируется в терминах энтропии – величины, которую можно определить как меру беспорядка в системе: высокая энтропия соответствует высокой степени беспорядка, низкая – высокой степени упорядоченности.
Типичная аналогия, иллюстрирующая законы термодинамики, – спальня подростка. С течением времени комната становится все более и более захламленной (т. е., степень беспорядка в ней повышается, или, что, по сути, то же самое, она переходит в состояние со все более высокой энтропией). Мы можем представить себе захламленность как естественное «равновесное» состояние этой системы. Единственный способ избежать этой захламленности и тем самым удерживать систему в состоянии, далеком от равновесия, – постоянно заниматься уборкой. Этот процесс требует затрат энергии, а энергия, скорее всего, будет получена из еды, которую подросток (или, что более вероятно, его родители) ест. Избыток этой энергии будет – после того как уборка в комнате закончится – рассеян в пространстве в виде тепла. Это следует из первого закона – энергия, полученная из еды, должна куда‐то деваться и не может просто исчезнуть. Следовательно, чтобы поддерживать состояние высокой упорядоченности (или низкой энтропии), нам необходимо иметь постоянный приток энергии, проходящей через систему. На языке физиков мы говорим, что приток энергии поддерживает систему в высокоупорядоченном состоянии, далеком от равновесия.
Живая система, такая, как человеческое тело, находится именно в таком высокоупорядоченном состоянии, напоминающем чисто убранную спальню. Будучи предоставленными сами себе, атомы вашего тела быстро превратились бы в груду неструктурированного материала, наподобие захламленной спальни. Приток энергии, попадающей в организм во время приема пищи, а в конечном счете – поступающей от Солнца, удерживает тело в состоянии, далеком от равновесия – то есть кучки неупорядоченных атомов. Резюмируя все вышесказанное, мы можем заключить, что живая система – это система, которую приток энергии удерживает в состоянии, далеком от равновесия.
Впрочем, это даст нам не столько определение жизни, сколько ключевое свойство живой системы, свойство, которое может говорить о возможности жизни как таковой. На языке логики это необходимое, но не достаточное условие жизни. Другими словами, все живые системы должны иметь приток энергии для поддержания состояния с высокой степенью организованности – но не все системы, обладающие таким свойством, будут живыми. Растущая снежинка, к примеру, – высокоупорядоченная система, задействующая для своего роста энергию тепла, но она не живая.
Концепция жизни, определенной в терминах термодинамики, очень пригодится нам, когда мы будем обсуждать возможность жизни,
Немного о технике
В 1960 году палеонтологи Луис и Мэри Лики, во время раскопок в Олдувайском ущелье в Танзании, обнаружили ископаемые останки гоминида в окружении обломков каменных инструментов. Гоминид, позже названный
А. А. Писарев , А. В. Меликсетов , Александр Андреевич Писарев , Арлен Ваагович Меликсетов , З. Г. Лапина , Зинаида Григорьевна Лапина , Л. Васильев , Леонид Сергеевич Васильев , Чарлз Патрик Фицджералд
Культурология / История / Научная литература / Педагогика / Прочая научная литература / Образование и наука