Читаем Воображаемая жизнь. Путешествие в поисках разумных инопланетян, ледяных существ и супергравитационных животных полностью

Некоторые ученые предлагают использовать для поисков жизни комбинации молекул биологического происхождения. Возьмем для примера кислород и метан. Концентрация метана на Земле нестабильна, потому что он окисляется (сгорает) в атмосфере. Но он там очевидным образом присутствует, так как легко образуется в ходе биологических процессов наравне с кислородом. Если бы мы могли «выключить» всю жизнедеятельность на Земле, метан исчез бы из ее атмосферы всего за насколько десятков лет. Кислород, если бы вся жизнь на Земле исчезла, продержался бы дольше, целых несколько тысячелетий, но тоже в конце концов исчез бы, поглощенный различными минералами в ходе процесса окисления. Таким образом, одновременное присутствие кислорода и метана могло бы служить биомаркером, даже несмотря на то, что по отдельности наличие этих газов ничего нам не дает.

Находить биомаркеры на экзопланетах, конечно, гораздо труднее, чем просто искать газы, возникающие в ходе биологических процессов на Земле. Это активно развивающаяся область исследований и предмет постоянных дискуссий среди исследователей экзопланет. Промежуточный итог этих дебатов на сегодняшний день выглядит так: мы не можем с полной уверенностью говорить о том, что обнаружили признаки жизни на экзопланете на основе наличия в ее атмосфере спектральных линий отдельных атомов и молекул – по крайней мере не на основе тех атомов и молекул, которые мы на настоящий момент там реально наблюдаем. По‐видимому, наиболее перспективный путь подобных поисков – поиск сочетаний газов биологического происхождения.

<p>Следующий шаг</p>

Итак, резюмируем, что нам известно к концу этой главы: мы уже знаем, что жизнь на почти любой из экзопланет должна развиваться путем естественного отбора (дарвиновской эволюции), и мы успели понять, как трудно найти действительно неопровержимое доказательство того, что жизнь там на самом деле существует. Давайте, однако, на время отложим эту проблему в сторону и сосредоточимся на том, как законы естественного отбора могли бы работать в тех многообразных условиях самых разных экзопланет, о которых нам уже известно. Наконец‐то обратимся к тому, что мы и называем исследованием воображаемой жизни.

В следующих главах мы представим вам ряд кратких фантастических очерков, в которых говорится о том, как человек, надлежащим образом защищенный и обеспеченный высокочувствительной измерительной аппаратурой, мог бы воспринимать условия окружающей его среды на самых разных экзопланетах, оказавшись там. Мы выбрали такой способ знакомства с новыми планетами по одной простой причине: как мы уже много раз повторяли, в настоящий момент земная жизнь – единственная разновидность жизни, о которой нам известно. Человек же – единственный вид живых организмов, о чьей реакции на новую среду мы можем более‐менее успешно догадываться.

Помня об этом, давайте отправимся наконец в мир, который мы назовем Айсхейм – Царство льда.

<p>6</p><p>Айсхейм – царство льда</p><p>Жизнь в морозилке</p>

Вы в длинном темном туннеле. Его стены – из твердого, как камень, льда. Единственным источником слабого света служит далекое жерло вулкана – оттуда из недр планеты прямо в туннель извергается расплавленное вещество. У себя под ногами вы с трудом различаете трубу, проложенную по направлению к выходу из туннеля. От нее поднимается горячий влажный воздух, и вы понимаете, что по ней течет горячая вода, протапливающая во льду проход от кратера к выходу. У вас урчит в животе: по пути сюда вы успели проголодаться. Неподалеку от вулканического кратера вы замечаете колонии белых и красных кольчатых червей. Берете одного на пробу – неплохо. Может, они станут для вас основным блюдом – здесь, на странной планете Айсхейм.

Мы начнем наше исследование гипотетически возможной жизни на экзопланетах с водных миров – таких как наш Айсхейм. Этот мир относительно просто устроен, и анализировать его тоже несложно. Эта планета напоминает слоеный пирог (с поправкой на шарообразность): в самой середине ее расположено сферическое ядро, состоящее из тяжелых элементов – железа и никеля. Слой вокруг ядра сложен из более легких материалов, в целом похожих на те горные породы, из которых состоят мантия и кора Земли. Поверх этого слоя – слой воды, а над ним газовая атмосфера.

Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука