Читаем Воображаемая жизнь. Путешествие в поисках разумных инопланетян, ледяных существ и супергравитационных животных полностью

Здесь возникают, однако, некоторые проблемы. Вероятно, самая крупная из них состоит в том, что аммиак становится жидким только при температурах, существенно более низких, чем земные. При этом существует общее правило: при понижении температуры химические реакции замедляются. Именно поэтому мы пользуемся холодильниками и морозилками – ведь разложение пищевых продуктов есть не что иное, как химический процесс. У химиков есть простое правило, подтвержденное практическим опытом: скорости реакций падают вдвое при понижении температуры на каждые последующие 10 °C. Следовательно, химические реакции в аммиачном океане шли бы примерно в 30–50 раз медленнее, чем они протекают в относительно теплых океанах Земли. А значит, развитие жизни, на которое на Земле ушли сотни миллионов лет, в океанах аммиака могло бы занять несколько миллиардов лет. (С проблемой температуры мы столкнемся в еще более острой форме, когда будем обсуждать свойства жидкого метана.)

Впрочем, мы не считаем сравнительно низкую температуру жидкого аммиака препятствием для развития жизни, углеродной или другой. Просто в мире, где океаны состоят из аммиака, жизнь эволюционировала бы гораздо дольше. Таким образом можно было бы рассчитать для планетных систем с океанами жидкого аммиака новые границы зон обитания – хотя нам неизвестно, предпринимались ли такие попытки. Вероятно, эти зоны лежали бы дальше от материнских звезд, чем зоны обитания, рассчитанные для жидкой воды.

Часть ученых, однако, всерьез сомневается в пригодности аммиака в качестве среды для жизни. Их возражения сводятся к тому факту, что силы, которые удерживают молекулы жидкости вместе, у аммиака гораздо слабее, чем у воды. Отметим к слову, что именно с этим свойством и связана способность аммиака не оставлять разводов и потеков на стекле. Взаимное притяжение между молекулами воды вызывает поверхностное натяжение, которое и заставляет воду собираться в капли на стекле. В случае жидкого аммиака поверхностное натяжение ниже, капель образуется меньше и поэтому потеков не остается. К несчастью, это же свойство молекул аммиака может затруднять образование длинных цепочек, столь важных для возникновения живых систем. Как и кремний, аммиак – излюбленная основа внеземной жизни у писателей‐фантастов. О нем, к примеру, часто вспоминают, когда пытаются представить себе жизнь в холодных внешних атмосферах газовых гигантов. Его способность растворять металлы приводит, помимо прочего, к увлекательным спорам о возможном цвете поверхности аммиачного океана. Однако, хоть мы и считаем океаны аммиака вполне возможными областями возникновения жизни на экзопланетах, на сегодняшний день никаких доказательств их существования у нас нет.

Как можно заключить уже из самого термина «природный газ», при температурах, которые мы считаем нормальными, метан – газ. Он превращается в жидкость только в диапазоне температур между −162° и −183 °C. Тем не менее нам известен один мир с достаточно низкой температурой поверхности, и мы знаем, что в этом мире существуют океаны из метана и других углеводородов. Таким образом, метан – единственная достоверно известная нам талассогенная субстанция (кроме воды, конечно). Мир, в котором метан определенно является составляющей океана, – это Титан, самый крупный спутник Сатурна. С нашей точки зрения, два важнейших факта, известных нам об этом небесном теле, таковы: во‐первых, это единственная в Солнечной системе луна с плотной атмосферой (состоящей, как и атмосфера Земли, в основном из газообразного азота), а во‐вторых, там ужасно холодно – температура поверхности Титана составляет примерно −179 °C.

Наилучшее описание этого мира будет следующим: он обладает знакомыми геологическими особенностями (например, там есть озера и горы), состоящими из непривычных материалов. При температурах, царящих на поверхности Титана, водяной лед тверд, как камень; озера и океаны, как уже сказано выше, здесь состоят из жидкого метана и других углеводородов. Наиболее знакомый нам из последних – этан, близкий родственник метана, содержащий два атома углерода. Песчаные дюны на экваторе Титана состоят из органических соединений темного цвета – один ученый сравнил их с дюнами из кофейных зерен.

Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука