Читаем Вопрос на засыпку. Как заставить мозги шевелиться полностью

Для поклонников тенниса едва ли найдется более завораживающее зрелище, чем идеальный удар Рафаэля Надаля на грунтовом корте. Мяч взмывает ввысь, перелетая через сетку, и в какой-то миг кажется, что подача была слишком длинной. Толпа разочарованно вздыхает. Но затем мяч, как будто Надаль привязал его к веревке или заставил магическим образом изменить траекторию, внезапно падает у задней линии. Мало того, отскочив от глины и подняв облако пыли, вращающийся мяч вдруг набирает скорость, и соперник, не рассчитав момент, рассекает ракеткой пустоту. Он стал жертвой знаменитого «топ-спина» Надаля. Никто не умеет лучше применять этот удар на грунтовом корте!

Роджер Федерер, один из лучших теннисистов мира, способен ударом справа с отскока придать мячу вращение в 2700 оборотов в минуту. Но ему не сравниться с Надалем, от удара которого мяч может начать крутиться со скоростью свыше 5000 оборотов в минуту.

Разумеется, теннисный мяч не всегда вращается. Иногда он просто отскакивает от ракетки игрока, летит прямо над сеткой, после чего происходит то, что и должно произойти согласно закону Ньютона. Мяч устремится к земле, когда вызванное гравитацией ускорение превысит ускорение от мощной подачи теннисиста, и, ударившись о корт, отскочит к его задней стороне.

Подобное происходит в тех редких случаях, когда игрок бьет по мячу под прямым углом: то есть когда ракетка движется к мячу в направлении, прямо противоположном направлению подачи, и ее лицевая часть находится под прямым углом. Если игрок ставит ракетку под наклоном к траектории мяча, происходит несколько иная ситуация.

Ракетка соприкасается с мячом при столкновении, и в результате трения между ними мяч быстро прокатывается по лицевой части ракетки. Отскакивая назад, он продолжает вращаться. Чем быстрее и чем более плоско ракетка подрезает мяч, тем больше будет скорость его вращения – при условии, что основная сила по-прежнему направлена вперед. Для придачи мячу максимального вращения игроку необходимо ударить по нему таким образом с максимальной скоростью, в то же время подавая его вперед через сетку.

Если ракетка подкручивает верхнюю часть мяча, он начинает вращаться по направлению к сопернику. Это и есть «топ-спин». Такой удар требует много силы, поскольку изначально мяч вращается в противоположную сторону, и бьющему необходимо развернуть его.

Если ракетка подрезает нижнюю часть, то та начинает вращаться вперед, а верх мяча – назад. Это удар с нижней подкруткой, и он требует меньше сил, поскольку направление вращения мяча не изменяется.

Вращающийся мяч в момент полета взаимодействует с воздухом. Из-за жесткой, ворсистой поверхности мяча при его вращении трение притягивает тонкий слой воздуха. Закрученный сверху мяч получает позади и сверху турбулентный поток. При уменьшении импульса от удара мяч начинает снижаться, тем самым усиливая притяжение воздуха и турбулентность, из-за чего внезапно падает раньше, чем это произошло бы благодаря одной только гравитации.

Исаак Ньютон обратил внимание на этот феномен еще в 1672 году, наблюдая в Кембридже за игрой своих друзей в теннис – впрочем, данное явление называется эффектом Магнуса в честь немецкого физика Густава Магнуса, исследовавшего его в 1850-х. Этот эффект используется во многих видах спорта с мячом. Боулеры применяют его при игре в крикет, чтобы сбить с толку бэтсменов, поскольку мяч падает раньше, чем те ожидают. И бейсбольные питчеры используют эффект Магнуса. Он зависит от погодных условий и наиболее ярко проявляется при высокой влажности воздуха. Если ветер дует в сторону подающего, действие эффекта заметно усиливается.

Для игрока, пытающегося отбить закрученный мяч, проблема заключается не только в обманчивой траектории. После удара о землю мяч из-за вращения может отскочить самым неожиданным образом. При «топ-спине» он отскакивает со скоростью, гораздо большей, чем была на приземлении. При нижней подкрутке наблюдается противоположный эффект: мяч при отскоке может зависнуть в воздухе. Дополнительное трение грунтового корта усиливает этот эффект, в то время как скользкая трава (особенно влажная) его минимизирует.

Федерер на пике своей формы – один из лучших подающих в истории мирового тенниса, бьющий с невероятной быстротой и точностью. Но неудивительно, что он предпочитает играть против Надаля, мастера закрученных подач, на травяном корте. Вращающийся теннисный мяч сделал Надаля «Королем грунта» – восьмикратным[27] победителем Открытого чемпионата Франции на момент написания данных строк.

Интересовался ли муссолини археологией?

(Археология, Оксфорд)

Перейти на страницу:

Похожие книги

1С: Предприятие. Торговля и склад
1С: Предприятие. Торговля и склад

Целью написания данной книги является создание руководства по работе с программным продуктом «1С: Предприятие» конфигурация «Торговля+Склад».В книге использован язык, понятный и доступный не только «продвинутым» пользователям системы «1С: Предприятие», но и людям, которые впервые будут с ней знакомиться. Данное руководство окажется полезным как пользователям, которые занимаются настройкой параметров учета, конфигурированием системы (построением структуры номенклатуры, структуры контрагентов и т. п.), проведением анализа введенной информации (формированием и анализом различных отчетов на основе введенных данных), так и пользователям, которые используют в своей работе узкий круг функций и возможностей системы «1С: Предприятие» (операторам, кладовщикам, кассирам, продавцам).Издание подготовлено при содействии Агентства Деловой Литературы «Ай Пи Эр Медиа»

Игорь Сергеевич Суворов

Финансы / Прочая научная литература / Образование и наука
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность — это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности — умение духа распознать, что ему на пользу. Кант говорил, что гениальность — это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества. Принцип классификации в книге простой — персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Коллектив авторов , Рудольф Константинович Баландин

Биографии и Мемуары / История / Прочая научная литература / Образование и наука / Документальное