Читаем Вопросы социализма (сборник) полностью

Кристалл обладает неизмеримо большим сопротивлением механическим деформирующим воздействиям, чем такое же количество того же вещества в виде мелкого порошка. В жидком состоянии тел частицы менее тесно связаны между собою, чем в твердом, и сопротивление деформации сравнительно ничтожно; в газообразном — оно становится отрицательным, форма нарушается, если нет препятствий, сама собою; это можно назвать механически дезорганизованным состоянием.

Интерференция волн, например световых, дает хорошую и весьма простую иллюстрацию всех трех типов сочетаний. Когда две одинаковые волны сливаются так, что их подъемы вполне совпадают между собою и понижения, конечно, тоже, то сила света в этом пункте не вдвое больше, чем от одной волны, а вчетверо: целое превосходит сумму частей, сочетание «организованное». Когда же подъем одной волны точно накладывается на понижение другой и обратно, то соединение света и света дает темноту: комбинация наиболее «дезорганизованная». Промежуточные соотношения волн образуют все ступени между крайними пределами «организованности» и «дезорганизации». Средняя из этих ступеней, где сложение волн дает двойную силу света, соответствует «нейтральным сочетаниям».

Мы нашли формально-строгое, пригодное для научного исследования определение «организации». Оно, как видим, одинаково прилагается и к сложнейшим, и к простейшим явлениям, и к живой природе, и к «неорганической». Оно показывает, что организация — факт универсальный, что все существующее можно рассматривать с организационной точки зрения.

IX

Но, по-видимому, до сих пор наши поиски ведут нас только от загадки к загадке. Вот и теперь у нас получился парадокс, мы принуждены отрицать священную основу здравого смысла, формулу «дважды два — четыре»: оказывается, что в действительности если она и бывает верна, то скорее по исключению: по правилу же целое бывает или больше или меньше суммы своих частей, и математическая аксиома «целое равно сумме своих частей» — лишь предельная абстракция. Каким образом возможно все это?

Всего проще было бы ответить так: это — факты, а значит, и толковать нечего. — Но из уважения к мудрости вещей постараемся если не оправдать, то объяснить наше посягательство на священную основу.

Та же самая математика знает множество случаев, где целое не равно простой арифметической сумме своих частей, а меньше ее; таков, в алгебре, результат сложения положительных и отрицательных величин: там два со знаком плюс и два со знаком минус дает не 4, а 0; такова, в теории векторов и кватерионов, «векториальная» сумма; примером ее может служить положение, что сумма двух сторон треугольника равна третьей его стороне. В механике, в физике выясняется реальный смысл этих формул: противоположно направленные перемещения тел, силы скорости, соединяясь, уменьшают друг друга; вообще же при различных направлениях подобные величины складываются по закону векториальной суммы, так наз. «параллелограмм» перемещений, сил, скоростей и т. п. Все это, в сущности, вещи очень обычные, всем знакомые из опыта: если активности соединяются так, что становятся друг для друга сопротивлениями вполне или отчасти, то их практическая сумма соответственно уменьшается. Если направления сил противоположны, то они всецело «дезорганизованы»; если совпадают, то вполне координированы или «сорганизованы» против общих им сопротивлений; в промежуточных комбинациях, например, силы, действующие под углом, они отчасти взаимно ослабляются, отчасти же взаимно усиливаются. Тут и для здравого смысла загадки нет.

Но другой случай — «целое больше суммы частей»? Он легко объясняется через предыдущий, если мы примем во внимание, что активности существуют и измеряются не сами по себе, а по отношению к каким-либо сопротивлениям, как и сопротивления — лишь по отношению к активностям. Возьмем самую простую иллюстрацию.

Два работника убирают камни с поля. Физическая сила каждого из них выражается предельной величиною, допустим 8 пудов. Но там есть камни и по 10, 12, 14 пудов. По отношению к ним работник индивидуально бессилен: т. е. измеренная объективно, по ее реальному эффекту, его активность, примененная к ним, определяется величиной нуль. — Но вот оба работника соединяют свои силы. Соединение получится, конечно, несовершенное: они будут не только помогать, но отчасти и мешать друг другу. Реальная сумма их усилий в пределе окажется, например, 15 пудов. Но измеренная по эффекту ее приложения к самым большим камням, она больше единицы, тогда как то и другое слагаемое равнялись нулю. Целое больше суммы частей; создался новый фактор действия, тот, который Маркс называл «механической силой масс».

Перейти на страницу:

Все книги серии Библиотека социалистической мысли

Похожие книги