Во всяком случае, так я думал…
По-видимому, существует веская причина, по которой эта задача все еще считается «открытой проблемой».
Хотя успеха я не добился, это меня не слишком расстроило. Я нахожу трудные вопросы очень привлекательными. Они заставляют размышлять. На самом деле я даже больше люблю задачи, которые не могу решить (или по меньшей мере не могу решить без труда), чем те, которые решаются в момент и без особых интеллектуальных усилий. Разумеется, это не значит, что я оказываюсь на вершине блаженства, когда не могу справиться с какой-нибудь проблемой – несомненно, решение непростой задачи, доставшееся ценой большого труда, доставляет гораздо больше удовольствия.
Вернемся, однако, к нашей гипотезе. Посмотрите, что тут происходит. Мы столкнулись с математической задачей, в которой используются только базовые арифметические операции – сложение, умножение и деление, – и тем не менее
Как такое может быть? Можно было бы предположить, что задача, которую можно сформулировать таким простым образом, должна иметь простое решение. Не тут-то было! На простой вопрос не всегда есть простой ответ. В математике есть множество вопросов, которые можно задать маленькому ребенку, и он легко поймет, в чем состоит задача, но ответов на них до сих пор не нашли даже самые гениальные взрослые.
Если рассмотреть достаточное количество примеров задачи Коллатца, можно заметить одно обстоятельство: последние числа, появляющиеся в этом процессе представляют собой последовательно уменьшающиеся степени 2. Например, если начать с 15, то последние пять чисел последовательности – это 16, 8, 4, 2 и, наконец, 1.
Это явление можно сформулировать в виде правила, сказав, что если процесс доходит до числа вида 2
Принцип замены исходной задачи на другую называется приведением или упрощением. Этот метод – полезный математический инструмент; в некотором смысле он открывает более естественный путь к решению математических задач. Еще одна, похожая, стратегия решения задач – это рассуждения в обратном порядке (от конца к началу). Этот прием, возможно, знаком вам по лабиринтам. Когда разрабатываешь маршрут по лабиринту, иногда бывает удобнее начать от выхода и прокладывать путь к исходной точке. В некотором глубоком смысле можно сказать, что в том же состоит и метод приведения математической задачи.
Венгерский математик Пал Эрдёш (1913–1996) любил предлагать денежные призы за успешное решение интересовавших его открытых математических проблем. Призы эти начинались с 25 долларов, а доказательство гипотезы Коллатца стоило в его прейскуранте целых 500 долларов – то есть попадало в категорию весьма дорогих задач, хотя сам Эрдёш говорил, что мир математики, возможно, не готов к таким сложным и запутанным задачам, как гипотеза 3
К слову, а также потому, что я хотел бы поделиться этим интересным фактом, самое большое число, когда-либо использованное в математическом доказательстве, названо в честь этого же самого Рона Грэма. Число это настолько велико, что его невозможно записать в стандартной математической нотации.