Уменьшение энергии фотонов при расширении Вселенной называется космологическим красным смещением. Название связано с тем, что энергия фотонов видимого света максимальна у фиолетового конца спектра и минимальна у красного конца. Поэтому при уменьшении энергии фотонов спектральные линии «смещаются» к красному концу спектра. Именно наблюдение в 1927 году Хабблом и Хьюмансоном смещения спектральных линий в спектрах, испускаемых галактиками, стало наблюдательной основой теории расширения Вселенной. Чем дальше от нас какая-то галактика, тем раньше испущен дошедший до нас сейчас свет и тем сильней поэтому красное смещение. На тех стадиях, когда энергия фотонов превосходила энергию, требуемую для образования пары барион + антибарион, барионы и антибарионы должны были присутствовать, причем в количествах, равных количеству фотонов в том же объеме (с точностью до постоянного численного множителя порядка единицы). В результате в предположении сохранения барионного заряда и полной барионной асимметрии сегодня имеем в некотором объеме Вселенной (числа условные, для иллюстрации):
Сейчас:
Фотонов / Барионов / Антибарионов
100 000 000 / 1 / 0
На горячей стадии добавляется 100 000 000 пар барионов и антибарионов:
Фотонов / Барионов / Антибарионов
100 000 000 / 100 000 001 / 100 000 000
Трудно представить себе, чтобы приведенные в последней строчке числа были «заданными природой» начальными условиями. Они в таком качестве «режут глаз», «такого не может быть». Именно это обстоятельство (как видит читатель, из области интуиции, а не дедукции) и было исходным стимулом для многих работ по барионной асимметрии, в том числе и моей.
Предложенные гипотезы распадаются на три группы (первые две — в предположении сохранения барионного заряда, третья — в предположении его нарушения).
Первая группа гипотез (Альфвен, Омнес и другие) предполагает, что во Вселенной существуют достаточно большие области, в которых в настоящее время есть только барионы, и другие столь же большие области, где есть только антибарионы, т. е. Вселенная как бы пятнистая. В среднем во Вселенной ровно столько же барионов, сколько антибарионов. Размер областей, чтобы не прийти к противоречию с наблюдениями, надо предположить достаточно большим, скажем это часть пространства, приходящаяся на одну галактику. Например, наша галактика и прилегающая к ней область содержит барионы, а туманность Андромеды, возможно, — антибарионы.
Далее предполагается, что на ранней стадии расширения Вселенной она была вся барионно-нейтральной; пятнистость возникла потом, в результате каких-то (у разных авторов — разных) процессов пространственного разделения.
В этой группе гипотез («симметричная с разделением») возникают большие трудности; главная из них та, что не было найдено сколько-нибудь эффективного механизма пространственного разделения барионов и антибарионов.
Предложенные до середины 70-х годов разными авторами макроскопические механизмы разделения вещества и антивещества могли функционировать лишь в крайне разреженной среде и были неэффективны.
Вторая группа гипотез, по существу, возвращает нас к холодной модели. В начальном состоянии есть только барионы (точней, кварки); температура равна нулю, потом, на все еще ранних стадиях, происходит нагрев из-за каких-то неравновесных процессов с выделением огромного количества фотонов, порядка ста миллионов на один барион. Образуются избыточные пары барион + антибарион, затем они аннигилируют и остаются те же барионы, с которых все началось, и реликтовые фотоны. Интересный вариант этой гипотезы — выделение тепла и фотонов за счет перестройки симметрии вакуума.
Третьей группе гипотез начало положено, по-видимому, мной (подробней, однако, смотри ниже — в вопросах приоритета всегда существуют нюансы). В 1966 году я высказал предположение о возникновении наблюдаемой барионной асимметрии Вселенной (и предполагаемой лептонной асимметрии) на ранней стадии космологического расширения из зарядово-нейтрального начального состояния, содержащего равное число частиц и античастиц. Работа была опубликована в 1967 году («Письма в ЖЭТФ», 1967, т. 5, вып. 1).[94]
Такой процесс возможен, только если:
1) закон сохранения барионного (и лептонного) заряда не является точным и нарушается при высоких температурах на ранней стадии космологического расширения (причем так, что не возникает противоречия с наблюдаемым большим временем жизни бариона при обычных температурах!);
2) различны вероятности образования частиц и античастиц при неравновесных процессах при начальном зарядово-симметричном состоянии.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное