Известные мне разности масс не противоречили принятому сейчас числу «цветов», равному трем. В настоящее время в связи с уточнением значений электромагнитных разностей масс можно получить более определенные результаты. Это привлекло, как я слышал, к себе внимание исследователей. Конечно, точные расчеты сильных (глюонных) взаимодействий кварков дают более прямой ответ. Но в науке всегда важна проверка некоторых центральных положений несколькими независимыми методами.
Три работы — одна опубликована до моей высылки и две после высылки — посвящены космологическим проблемам. В первой работе я обсуждаю механизмы возникновения барионной асимметрии.[258]
Некоторый интерес, быть может, представляют общие соображения о кинетике реакций, приводящих к барионной асимметрии Вселенной. Однако конкретно в этой работе я веду рассуждения в рамках своего старого предположения о наличии «комбинированного» закона сохранения (сохраняется сумма чисел кварков и лептонов). Я уже писал в первой части воспоминаний, как я пришел к этой идее и почему я считаю ее сейчас неправильной. В целом эта часть работы представляется мне неудачной. Гораздо больше мне нравится та часть работы, где я пишу о многолистной модели Вселенной. Речь идет о предположении, что космологическое расширение Вселенной сменяется сжатием, потом новым расширением таким образом, что циклы «сжатие — расширение» повторяются бесконечное число раз. Такие космологические модели издавна привлекали внимание. Разные авторы называли их «пульсирующими» или «осциллирующими» моделями Вселенной. Мне больше нравится термин «многолистная модель». Он кажется более выразительным, больше соответствующим эмоциональному и философскому смыслу грандиозной картины многократного повторения циклов бытия.До тех пор, пока предполагали сохранение барионов, многолистная модель встречалась, однако, с непреодолимой трудностью, следующей из одного из основных законов природы — второго начала термодинамики.
(
Числовой пример для наглядности. Некое тело, имеющее температуру 200 градусов, отдает при теплообмене 400 калорий второму телу, имеющему температуру 100 градусов. Энтропия первого тела уменьшилась на 400/200, т. е. на 2 единицы, а энтропия второго тела возросла на 4 единицы. Суммарная энтропия возросла на 2 единицы, в соответствии с требованием второго начала. Заметим, что этот результат есть следствие того факта, что тепло передается от более горячего тела к более холодному.)
Возрастание суммарной энтропии при неравновесных процессах в конечном счете приводит к нагреванию вещества. Обратимся к космологии, к многолистным моделям. Если мы при этом предполагаем число барионов фиксированным, то энтропия, приходящаяся на барион, будет неограниченно возрастать. Вещество с каждым циклом будет неограниченно нагреваться, т. е. условия во Вселенной не будут повторяться!
Трудность устраняется, если отказаться от предположения о сохранении барионного заряда и считать, в соответствии с моей идеей 1966 года и ее последующим развитием многими другими авторами, что барионный заряд возникает из «энтропии» (т. е. нейтрального горячего вещества) на ранних стадиях космологического расширения Вселенной. В этом случае число образующихся барионов пропорционально энтропии на каждом цикле расширения — сжатия, т. е. условия эволюции вещества, образования структурных форм могут быть примерно одинаковыми в каждом цикле.)
Я впервые ввел термин «многолистная модель» в работе 1970 года. В своих последних статьях я употребляю тот же термин в несколько ином смысле; я упоминаю здесь об этом во избежание недоразумений.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное