Дублировать запасы топлива было слишком расточительным, поэтому запасы топлива расположили в двух баках: в один залили окислитель, в другой — горючее. Всего было чуть более 100 кг топлива. Нормальный процесс горения, который происходит в двигателях, требует больше окислителя, чем горючего, поэтому при выработке топлива из баков может возникнуть ненужное возмущение, если баки равноудалены от центральной оси. Нужно было что-то предпринять. И тогда разработчиком А.Серебряниковым было предложено очень простое решение. А что, если силовую раму сделать в виде двойной бочки? Одна побольше, и на нее поставить бак горючего, а другая поменьше внутри первой, и на нее поставить бак окислителя. Это позволит удалить баки окислителя и горючего от центральной оси примерно в пропорции соотношения компонентов топлива, поступающих в двигатель, и снимет ненужные помехи при выработке топлива. Такая конструкция силовой рамы была принята. Мы уже говорили про вибропрочность в ракетной технике. Вот чтобы в этом агрегате не заниматься этой проблемой, после монтажа трубопроводов, кабелей все внутренности между оболочками, где располагались трубопроводы и арматура, запенивались. Получалась трехслойная панель сферической формы, очень прочная и защищающая трубопроводы от вибрации.
Компоненты топлива, находящиеся в баках, нужно уметь еще и подать к двигателям, И подать только компоненты топлива, а не газ наддува или смесь газа наддува с топливом. Начали решать проблему разделения газовой и жидкой сред. Учитывая уже имеющийся опыт фирмы Степанова, а ею были созданы баки с внутренними металлическими диафрагмами, хорошо отработанные и испытанные в полете, приняли металлический разделитель. Металлический разделитель должен укладываться по днищу бака так, чтобы обеспечить минимум непроизводительных остатков топлива. Учитывая изменения температуры в баках, хотя и небольшие, он должен позволять «гулять» жидкости, а сам выдерживать многократные циклические нагрузки.
Вопросов пришлось решать много, в том числе и технологических, включая раскрой листа. Нужна была специальная тонкая листовая сталь, точнее штампы и т. д. Забот разделитель доставил немало.
При создании двигателей блока Е с целью «выжимания» удельных характеристик была применена турбонасосная система подачи компонентов. (Заметим, что на LEM была вытеснительная система.) Для микродвигателей создавать турбонасосную систему подачи топлива было накладно. Да и давление в камерах сгорания было сравнительно небольшим — десятки атмосфер. Это позволяло подавать компоненты топлива к двигателям путем давления газом повышенного давления на металлическую мембрану. Такой способ подачи, хотя и требует повышенного запаса газа наддува (им был гелий), отличается простотой и повышенной надежностью по сравнению с турбонасосной подачей. Сравнение суммарных массовых затрат по блоку двигателей ориентации также говорило в пользу вытеснительной системы подачи.
Безусловно, определяющую роль в этой схеме играли сами двигатели. Создание ракетных двигателей большой тяги всегда проблема. Но опыт был накоплен достаточно большой, в том числе по охлаждению камер сгорания. А в двигателях малой тяги, учитывая их импульсную работу и ограничения (десятком секунд) непрерывной, делать охлаждаемую камеру сгорания и сопловые насадки было неоптимально. Стали подбирать соответствующий материал, смотрели высокопрочную сталь для камеры сгорания, а для сопла — ниобий или графит. Свойства этих материалов должны быть такими, чтобы воспринять большие тепловые и силовые нагрузки, да к тому же быстро рассеять накопленное тепло. Не одну тысячу испытаний прошли двигатели, прежде чем показали свою надежную работу.
Очень жесткие требования к двигателям предъявлялись по минимальному импульсу тяги, или другими словами, по созданию кратковременного минимального силового воздействия на лунный аппарат. Можно ли себе представить, что, скажем, электровоз с миллиметровой точностью устанавливает детскую коляску? Очень трудно. Так и на Лунном корабле. Нужно было уметь удерживать оси корабля в космическом пространстве с минутными угловыми значениями. Вот здесь и получали электровоз, если двигатели не могли быстро реагировать на перерегулирование. Применение самовоспламеняющихся компонентов топлива позволило без лишних усилий обеспечивать их воспламенение в камере сгорания и выход двигателя на режим. Оставалось решить вопрос о быстроте и синхронизации впускных клапанов. В результате общих усилий получили минимальную приведенную длительность импульса тяги около 9 миллисекунд.