Поскольку все БАВ — органические молекулы, каждая из них имеет определенный срок жизни, после которого она должна быть утилизирована. Речь не идет о том, что кто-то в организме специально отслеживает возраст каждой молекулы и отдает распоряжение: все, срок вышел — под нож! Разумеется, это процесс стохастический (случайный) и статистический (вероятностный). Однако в итоге получается, что все крупные информационные макромолекулы существуют от нескольких минут до нескольких часов, молекулы промежуточного размера могут сохранять свою целостность в течение суток, а мелкие молекулы сохраняются иногда несколько суток. Это справедливо не только для молекул БАВ, такова судьба всех молекул, из которых состоит живое вещество: наш организм постоянно обновляется, в нем непрерывно идут процессы синтеза (анаболизма) одних молекул и распада (катаболизма) других. Непрерывно обновляются также и все без исключения клетки нашего организма. До недавнего времени считалось, что нервные клетки не восстанавливаются, не регенерируют и не обновляются. В последние годы получены убедительные доказательства того, что это совсем не так: даже нервные клетки постоянно обновляются, не говоря уже обо всех остальных.
В этой связи судьба молекул БАВ в организме не кажется исключительной. Быстрее всего распадаются молекулы медиаторов, о чем уже говорилось выше. Продукты распада молекул БАВ могут включаться в дальнейшие метаболические превращения, иногда они сами обладают информационной значимостью, но могут и выводиться из организма — чаще всего с мочой. Также с мочой выводятся иногда и некоторые некрупные молекулы БАВ, концентрация которых в крови оказывается повышенной. По этой причине для определения уровня некоторых гормонов в организме нередко исследуют не только кровь, но и мочу. Некоторые гормоны способны проникать даже в слюну и так выделяться из организма. Это позволяет следить за их содержанием по результатам биохимического анализа слюны.
Гормональная регуляция физиологических процессов была бы невозможной, если бы выработанные эндокринными железами гормоны одинаково воздействовали на все ткани, с которыми соприкасается содержащая их кровь. Поэтому в ходе миллионов лет эволюции выработались специальные приспособления, обеспечивающие «прицельность» попадания гормонов именно на те клетки, состояние которых они призваны регулировать. Эти клетки и состоящие из них органы называют «мишенями», поскольку именно на их поверхности должны прикрепляться молекулы гормонов. Для этого на мембранах клеток-мишеней формируются специальные активные места (рецепторы), механически и химически приспособленные к тому, чтобы прочно соединиться с молекулой гормона и удерживать ее до тех пор, пока в этом будет нужда. Если такие рецепторы не сформированы, то гормон не может прикрепиться к мембране и никакого действия на метаболизм клетки оказать не в состоянии. Таким образом, гормональная регуляция функций требует активного участия в этом процессе с обеих сторон железа и должна вырабатывать необходимое количество молекул гормона, а ткань должна подготовиться к тому, чтобы эти молекулы принять. Формирование рецепторов для прикрепления гормонов происходит под управлением генетического аппарата клетки. Сам по себе этот аппарат также может менять свою работу под влиянием других гормонов. В результате получается, что гуморальная регуляция функций — это сложнейший процесс, в организацию которого включены самые разнообразные химические, механические, генетические и молекулярные механизмы.
Скорость образования гормонов зависит от влияния других желез внутренней секреции и нервных центров, управляющих соответствующей железой. Кроме того, по мере возрастного развития скорость секреции многих гормонов может меняться в соответствии с разворачиванием генетической программы. Например, гормон роста вырабатывается гипофизом в разных количествах на разных этапах онтогенеза. Наибольшее количество гормона роста наблюдается у детей в период интенсивного роста костей.