В книге “Жизнь космоса” (1997) я описал механизм эволюции законов природы, моделью для которого послужила биологическая эволюция[13]
. Я предположил, что Вселенные могут образовывать зародыши внутри черных дыр и что всякий раз, когда это происходит, законы физики слегка изменяются. В этой теории законы играют роль генов, а Вселенная отражает выбор законов при ее рождении точно так, как организм воплощает генома. Как и гены, законы природы могут подвергаться случайным мутациям. Вдохновленный достижениями теории струн, я представил, что поиск универсальной теории приведет нас не к “теории всего”, а к большому набору возможных законов природы. Я назвал это ландшафтом теорий (по аналогии с адаптивным ландшафтом в генетике). Этой теме я посвятил главу 11 данной книги (а здесь прибавлю лишь, что теория естественного космологического отбора делает несколько предсказаний, которые пока никто не опроверг, несмотря на неоднократно представлявшиеся возможности).В последнее десятилетие многие физики-теоретики, занимающиеся теорией струн, восприняли концепцию ландшафта теорий, и вопрос о том, как Вселенная выбирает законы, обрел актуальность. Ответ (ниже я постараюсь это доказать) можно получить лишь в рамках космологической модели, в которой время реально, а законы природы эволюционируют со временем.
Законы не даются Вселенной извне. Ни один внешний объект, сверхъестественный либо математический, не указывает заранее, какими должны быть законы природы. Они не изъяты из времени и не ждут рождения Вселенной, а появляются и эволюционируют вместе с ней. Возможно даже, что новые законы физики, как в биологии, могут возникать из упорядочения нового явления в ходе эволюции Вселенной.
Кто-то усмотрит в отрицании вечных законов отступление от целей самой науки. Я же вижу здесь сбрасывание за борт метафизического балласта, мешающего поискам истины. Ниже я приведу примеры того, как мысль об эволюционирующих законах ведет к такой космологии, которая способна делать проверяемые в эксперименте предсказания.
Насколько мне известно, первым ученым эпохи научной революции, размышлявшим о теории всей Вселенной, был Готфрид Вильгельм Лейбниц. (Между прочим он оспаривал у Ньютона приоритет открытия дифференциального исчисления, предвосхитил современную логику, разработал систему двоичного исчисления и много чего еще. Его называли умнейшим человеком в истории.) Лейбниц сформулировал принцип, ставший базисным для космологии –
В картине мира Лейбница все сущее находится не в пространстве, а погружено в сеть взаимосвязей. Эти связи определяют пространство (а не наоборот). Сегодня идея Вселенной, представляющей собою сеть, пропитывает современную физику, биологию и компьютерные науки.
В реляционном мире (где связи первичны по отношению к пространству) нет пустоты. Ньютон, напротив, считал пространство первичным и абсолютным (это означало, что атомы определяются исходя из их положения в пространстве, однако на пространство они никак не влияют). В мире связей нет такой асимметрии. Субъекты могут быть частично автономны, но их возможности определяются связями, соединяющими их в вечно меняющуюся динамическую сеть.
Из принципа Лейбница следует (см. главу 3) отсутствие абсолютного времени, слепо метящего события. Время – следствие изменений. В неизменном мире нет времени. Философы утверждают, что время относительно, что оно – свойство отношений, таких как причинная зависимость. Аналогично и пространство может быть относительным. В самом деле, любое свойство объекта в природе должно быть отражением динамических[14]
отношений между этим и другими объектами.Принципы Лейбница противоречат ньютоновой физике, и ученое сообщество их приняло не сразу. Эйнштейн использовал принципы Лейбница в качестве обоснования теории относительности, заменившей ньютонову физику. Принципы Лейбница также реализованы в квантовой механике. Я называю революцию в физике XX века
Реляционная революция идет полным ходом. Пример – дарвинистская революция в биологии: понятие биологического вида определено через отношение к остальным организмам, а гены рассматриваются в контексте набора связанных генов. Все сводится к передаче информации, и нет аналогии ближе, чем связь между передатчиком и приемником посредством канала передачи данных.