Небольшое число нелокальных соединений может быть даже выгодно, если одна из упомянутых идей верна. Но если нелокальных соединений слишком много, вы столкнетесь с проблемами при возникновении пространства. Это проблема
Проблема в том, что есть гораздо больше способов, сложив треугольники, получить невообразимые фигуры, чем двумерную сферическую поверхность. Во всех этих диких формах проступает строение атома, потому что в масштабе отдельных треугольников присутствует множество деталей и неоднородностей. Так что идеального пространства не возникает.
Результаты того, как общая теория относительности (ОТО) строится на основе теории петлевой квантовой гравитации, не содержат обратной задачи: они основаны на конкретном выборе графов, которые можно построить путем триангуляции пространства. Эти результаты, хоть и впечатляющие, не говорят, как описать эволюцию более общих графов с множеством нелокальных связей.
Это подчеркивает, насколько стесняющим является условие локальности пространства. Это важный урок. Если пространство возникает из квантовой структуры, должен существовать некий принцип (или сила), который заставляет “кирпичики” пространства собираться так, чтобы оно выглядело, как наше. В частности, должен работать механизм, обеспечивающий “кирпичику” соседство лишь с несколькими другими соседями: при случайной сборке пространства этого не произойдет.
Я рассказывал о квантовой ОТО, но обратная задача присутствует в квантовой гравитации и в других подходах, включая подходы теории причинных множеств, в матричной модели теории струн и динамической триангуляции. Каждый из них по-своему привлекателен, и каждый сталкивается с описанной проблемой.
Главный вопрос заключается в том, почему реальный мир похож на трехмерное пространство, а не на сильно связанные между собой сети. Чтобы понять сложность этого вопроса, представьте, что мы среди обладателей сотовых телефонов. Пространство исчезло, как и понятие расстояния, и кто ближний, а кто нет, определяется лишь тем, кто кому звонит. Если вы разговариваете с кем-либо по меньшей мере однажды в день, вас обоих сочтут ближайшими соседями. Чем реже вы звоните кому-либо, тем дальше вы от этого человека. Это понимание расстояния более гибко, чем понятие расстояния в пространстве. В пространстве, как мы видели, у всех одинаковое количество потенциальных ближайших соседей. В трехмерном пространстве, в отличие от сотовой сети, ни у кого не может быть более 6 соседей.
В сотовой сети вы можете быть так близко от любого пользователя, как пожелаете. Если я знаю, как далеко вы находитесь от, скажем, 50 тысяч других пользователей, это ничего не скажет о том, как далеко вы от пользователя № 50001. Следующий может оказаться незнакомцем – или вашей собственной матерью. Но в пространстве понятие близости становится жестким. После того, как вы скажете мне, кто ваши ближайшие соседи, я узнаю, где вы живете. Я смогу сказать, как далеко вы от остальных.
Следовательно, для того, чтобы определить устройство сети, требуется гораздо больше информации, чем для того, чтобы определить расположение объектов в двух– или трехмерном пространстве. Чтобы указать, как подключены 5 миллиардов сотовых телефонов, мне необходима информация для каждой пары пользователей. Это примерно 5 миллиардов в квадрате или 2,5 x 1019 чисел. Но чтобы указать, где на Земле находится каждый пользователь, мне нужно знать лишь два числа: долготу и широту, то есть 12 миллиардов чисел. И если пространство возникает посредством выключения соединений, должно быть отключено огромное количество потенциальных соединений.