Теперь рассмотрим Музей им. Гуггенхайма, построенный в Бильбао по проекту Фрэнка Гери. Внешняя поверхность здания состоит из металлических листов. Чтобы сделать криволинейные поверхности для этой конструкции, каждый лист должен быть индивидуален, и важно, куда его установят. Здание примет форму, соответствующую замыслу архитектора, лишь если каждый лист окажется на своем месте. В данном случае чертеж также представляет собой макросостояние, а набор инструкций для каждого листа – микросостояние. Но, в отличие от большинства кирпичных зданий, здесь нет свободы изменять микросостояния. Существует лишь одно микросостояние, которое соответствует своему макросостоянию.
Концепция, объясняющая, сколько микросостояний могут соответствовать одному макросостоянию, позволяет нам оценить, почему Гери является революционером. Эта концепция называется
Как это работает в физике? Рассмотрим контейнер, заполненный газом, состоящим из очень большого количества молекул. Фундаментальное описание системы – микроскопическое. Оно говорит, где каждая молекула находится и как движется. Это огромное количество информации. Но есть и макроскопическое описание, в котором газ описывается через плотность, температуру и давление.
Описание плотности и температуры требует гораздо меньше информации, чем необходимо, чтобы сказать, где находится каждый атом. Следовательно, есть простой способ переводить микроскопическое описание в макроскопическое, но не наоборот. Если известно, где каждая из молекул, то вы знаете плотность и температуру, которая является средней энергией движения. Но наоборот сделать невозможно: есть множество способов того, как атомы могут быть организованы микроскопически, что в результате даст такое же состояние с теми же плотностью и температурой. Переходя от микросостояний к макросостоянию, полезно подсчитать, сколько микросостояний согласуется с данным макросостоянием. Как и в архитектурном примере, это число задается энтропией макроскопической конфигурации. Обратите внимание: энтропия – свойство лишь макроскопического описания. Энтропия, следовательно, является системным свойством, и нет смысла приписывать ее микросостояниям системы.
Следующий шаг: связываем понятия энтропии и вероятности. Это можно сделать, предположив, что все микросостояния одинаково вероятны. Данный физический постулат подтверждается тем, что атомы газа находятся в хаотическом движении, которое делает их перемещения равновероятными. Чем выше энтропия макросостояния, тем вероятнее, что оно реализуется. Наиболее вероятное макросостояние, учитывая, что микросостояния случайны, называется состоянием равновесия. Оно также обладает наибольшей энтропией.
Разделите кошку на атомы. Перемешайте их. Существует гораздо больше микросостояний кошачьих атомов, случайным образом перемешанных в воздухе комнаты, чем микросостояний собранной из тех же атомов кошки на диване. Кошка – в высшей степени невероятный случай организации атомов, и, следовательно, по сравнению с теми же рассеянными в воздухе атомами, она характеризуется низким значением энтропии и высоким – информации.
Атомы газа движутся хаотично. Когда они сталкиваются, направление их движения меняется более или менее произвольно. Таким образом, время, как правило, делает микросостояния случайнее. Если микросостояние не было случайным, то довольно скоро оно станет таковым. И если мы начнем с равновесного макросостояния с низкой энтропией, то, скорее всего, его энтропия возрастет. Это второе начало термодинамики.
Поставим эксперимент. Для этого нужны игральные карты. Предположим, что карты в колоде расположены по порядку. После этого раз в секунду они перетасовываются. Каждая перетасовка делает порядок более случайным. Энтропия, как правило, возрастает. После нескольких перетасовок порядок карт нельзя будет отличить от случайного. Ни намека на первоначальный порядок, по сути, уже нет.
Эта закономерность отражена во втором начале термодинамики. В контексте нашего эксперимента этот закон гласит: перетасовка колоды будет стремиться уничтожить любой начальный порядок карт, заменив его случайным.