Если ОТО верна, нельзя не прийти к заключению, что время не может быть фундаментальным. В противном случае придется отвечать на ряд трудных вопросов, например, что было до того, как начался отсчет времени, из чего родилась Вселенная? А если законы вечны, то какими они были прежде, чем возникла Вселенная, которая управляется ими? Очевидно, что прежде возникновения Вселенной не было никакого времени, а это означает, что законы природы более фундаментальны, чем время.
В одних из этих решений ход времени, однажды начавшись, будет продолжаться вечно, пока Вселенная расширяется. В других решениях Вселенная достигает максимального расширения и затем сжимается в точку (Большое сжатие), где многие наблюдаемые величины снова становятся бесконечными. Такие решения описывают Вселенные, в которых время имеет конец. Запуск и остановка времени не являются проблемой в блочной модели, в которой история Вселенной – единое целое вне времени.
В этой картине мира реальность не пострадает, если время начинается или заканчивается. Тот факт, что решения уравнений ОТО предполагают момент начала, укрепляет позиции блочной модели: он ослабляет доводы в пользу времени как понятия более фундаментального, чем законы природы.
Итак, мы совершили экскурс в историю устранения времени из физической картины мира. Как Галилей и Декарт, мы начали с фиксации движения и времени с помощью метода построения графиков, в которых время представлено в качестве координатной оси измерения пространства. В теории относительности эти графики стали основой построения пространства-времени, вневременной картины истории Вселенной, в которой настоящее не соответствует ничему реальному. Вследствие относительности одновременности мы не можем отделить время от пространства. Мы можем лишь описать Вселенную в виде блочной модели. С СТО и ОТО, предсказания которых подтверждены экспериментально, физики получили основания принять картину реальности, в которой времени нет.
Глава 7
Квантовая космология и конец времени
После первого семестра в колледже я приехал на рождественские каникулы в Нью-Йорк и остановился у двоюродной сестры в Гринвич-виллидже. Утром я отправился на метро на свою первую конференцию по физике, громко называвшуюся “VI Техасский симпозиум по релятивистской астрофизике”. Конференция проходила в одном из шикарных отелей Манхэттена. Меня туда, конечно, не звали (и не припоминаю, чтобы я регистрировался): просто мой профессор физики Герб Бернштейн посоветовал туда заглянуть. Разумеется, я никого не знал, но мне повезло. Я познакомился с Кипом Торном из Калифорнийского технологического института (он порекомендовал мне для ознакомления с общей теорией относительности учебник, который сам недавно написал вместе с Чарльзом Мизнером и Джоном А. Уилером)[44], а также с Лейном Хьюстоном, молодым американцем-математиком, учившимся в Оксфорде. Хьюстон долго пытался объяснить мне новейшую теорию твисторов, а после представил меня ее автору – Роджеру Пенроузу.
На одной из сессий я пристроился в проходе. Мимо проехал человек в инвалидной коляске. Стивен Хокинг был уже знаменит своими работами по ОТО, а еще год спустя он сделал открытие, что черные дыры – горячие. С Хокингом остановился поболтать высокий бородатый мужчина с хорошими манерами. Затем его (а это был Брайс С. Девитт) вызвали делать доклад. Не помню, о чем говорил Девитт, но я уже слышал о нем и его уравнениях, описывающих квантовые Вселенные. У меня не хватило смелости подойти. И уж конечно я не думал, что 7 лет спустя, когда я закончу кандидатскую, эти два гиганта современной физики пригласят меня работать с ними.
Девитт, Уилер, Мизнер и Хокинг стали первооткрывателями квантовой космологии, связавшей ОТО с квантовой физикой. Квантовая космология – это последняя вершина, на которую нам предстоит подняться. В описанной Девиттом, Уилером, Мизнером и Хокингом Вселенной нет времени. Квантовый космос не развивается и не меняется, не расширяется и не сжимается: он просто-напросто есть.
Следует подчеркнуть, что квантовая космология в высшей степени спекулятивная область теоретической физики, и пока она не располагает надежными экспериментальными подтверждениями. Ей не хватает весомости теории относительности, многократно подтвержденной экспериментами и продолжающей удивлять точностью своих предсказаний.
Начнем с квантовой механики. Для начала придется объяснить, как в квантовой механике моделируются подсистемы Вселенной. Чтобы получить квантовую теорию гравитации, мы должны объединить квантовую механику с ОТО. Есть разные подходы, и, хотя известно, как сформулировать такую теорию, эксперименты пока не позволяют определить, какой подход удачнее. Поэтому сразу перейдем к включению всей Вселенной в квантовую теорию. Результатом этого явится вневременная картина природы.