– То есть функция твоего счастья принимает средние значения, но первая производная является положительной.
Джеймс мог вырвать бутерброд из моей руки, выплеснуть свой чай мне в лицо и завопить:
– Наша дружба кончена!
Вместо этого он улыбнулся, наклонился и – клянусь вам, все так и было! – сказал:
– Звучит увлекательно. Объясни мне, что это значит.
– Ну, – начал я читать лекцию, – изобрази график изменения уровня своего счастья со временем. Линия проходит на средней высоте, но в данный момент поднимается – это и есть положительная производная.
– Понятно, – ответил он. – Значит, отрицательная производная означает, что дела идут хуже?
– Ну, – я увильнул от прямого ответа, – в каком-то роде.
Я демонстрировал педантичность, за которую математиков так любят. (Или правильно сказать «критикуют»?)
– Отрицательная производная означает, что значение уменьшается. Для некоторых функций – например, личного долга или физической боли – хотелось бы иметь отрицательную производную. Но в случае со счастьем – да, это не очень хорошо.
Это был довольно необычный первый урок по дифференциальному исчислению. Большинство студентов постигают эти идеи не с помощью зыбкой психологии функции «счастья», а через ясную и лаконичную физическую картину «положения». Например, обозначим положение велосипедиста на велодорожке как
Что выражает здесь производная? То, как быстро
Большое значение
Из нашего первоначального графика (определяющего
Джеймс, умница, проникся математическим анализом так, будто это было неким видом инопланетной поэзии. Как учитель английского он был профессиональным исследователем языка и способности слов фиксировать человеческий опыт. В сухом языке производных он, кажется, нашел своеобразную «литературность».
– А есть еще и вторая производная, – сказал я.
Джеймс серьезно кивнул:
– Расскажи мне.
– Это производная производной, она говорит о том, как меняется величина изменений.
Джеймс нахмурился по вполне понятной причине: это была какая-то бессмыслица.
Я попытался снова.
– Производная – это величина улучшения твоего состояния. Вторая производная спрашивает: ты изменяешься все быстрее и быстрее? Или улучшение замедляется?
– Хм-м-м-м, – Джеймс прикусил губу. – Я бы сказал, что быстрее и быстрее. Значит, вторая производная… положительная, верно?
– Да!
– А если улучшение замедляется, – продолжил он, – тогда первая производная по-прежнему остается положительной, а вторая становится отрицательной.
– Да.
– Мне это нравится, – сказал Джеймс. – Я должен научить этому всех своих друзей. И когда они будут спрашивать, как мои дела, я смогу сообщать им о своем эмоциональном состоянии с помощью всего нескольких показателей.
– Что-то вроде:
– О-о-о, дай подумать! – Джеймс воспринял мое заявление как лингвистическую загадку, краткую и безыскусную форму записи. – Это означает… Я счастлив… И я становлюсь менее счастлив… Но снижение моего уровня счастья замедляется?
– Все верно.
Для выражения тонких оттенков эмоций этот язык может показаться неестественным или топорным, как заявления «Человек счастлив!» или «Человек грустит!». Но, как и все производные, это что-то вроде физической метафоры – аналогия движения через пространство.
Как мы уже видели на примере велосипеда, производной положения является скорость. А производная скорости? Это
Производные и вторые производные дают четкую информацию. Чтобы понять разницу, представьте себе ракету сразу после отрыва от земли, когда лица астронавтов расползаются, как желе. Скорость еще низкая, но изменения происходят быстро, поэтому ускорение высокое.
Может быть и обратная ситуация. Летящий на эшелоне самолет имеет высокую скорость, но она является постоянной и не меняется, поэтому ускорение равно нулю.