Толстой восхищался тем, что математический анализ сделал для изучения механики. «Для человеческого ума, – писал он, – непонятна абсолютная непрерывность движения»[42]
, именно поэтому мы и попадаемся на парадоксы Зенона. Матан, «допуская бесконечно малые величины… тем самым исправляет ту неизбежную ошибку, которую ум человеческий не может не делать»[43]. По аналогии можно сказать, что историки – нахальные маленькие Зеноны, дробящие поток времени на необоснованные, не связанные друг с другом события. Математический анализ, как считал Толстой, может исправить несовершенство нашего мыслительного процесса, восстановив единство и непрерывность истории.Я могу представить счастливый финал этой сказки. «Война и мир» опубликована. Глупые старые историки читают эту жгучую прозу, пронзительно вопят и рассыпаются в прах. Новые историки, искушенные в математическом анализе, занимают кресла своих предшественников. Эти правильно рассуждающие свежие головы измеряют «дифференциал истории» и разрабатывают окончательную теорию исторического изменения. Ура! Абсолютные законы найдены и подтверждены! «Великие люди» в истории читают эти законы, пронзительно вопят и рассыпаются в прах. Крестьяне заявляют права на их кресла. Нобелевские премии раздаются в огромных количествах, и все мы живем долго и счастливо.
Как ни грустно, 150 лет назад все произошло совсем по-другому.
В те дни никто на самом деле не ожидал открытия детерминированных законов истории. Вместо этого науки представлялись как расположенные в неоднородной последовательности от точных (таких как математика и физика) до гуманитарных (скажем, психологии и социологии).
В своем самом невыносимом настроении точные науки любят хвастаться и злорадствовать, как будто точные означает сложные, а гуманитарные – простые. Дело, конечно, обстоит совсем наоборот. Чем «легче» наука, тем более сложным являются описываемые ею явления.
Физики могут предсказать поведение атомов. Но соберите достаточное количество атомов, и расчеты станут слишком громоздкими и тяжеловесными. Нам нужны другие, новые законы – химические. Затем соберите достаточное количество химических элементов, и сложность снова захлестнет нас. Чтобы перейти к новым теориям и правилам, нам понадобится биология, и так далее по этой прямой. В каждый переломный момент роль математики меняется: из доподлинной она превращается в ориентировочную, из детерминистической – в статистическую, из обобщенной – в противоречивую. Простые явления (такие как кварки) следуют математическим законам с рабской покорностью. Сложные феномены (например, маленькие дети) подчиняются им в гораздо меньшей степени.
О чем же просит Толстой? Ему не так уж много и надо: только того, чтобы самые сложные явления подпадали под действие самых строгих математических законов. Только чтобы люди вели себя, как планеты. Надо ли говорить, что мы все еще ждем появления этой теории.
В Толстом наблюдается противоречие: с одной стороны, он чуток к мелочам и обладает даром улавливать искрометные мгновения повседневной жизни. С другой стороны, его снедает желание получить ответы на глобальные вопросы: что движет людьми? Почему случаются войны? Отчего воцаряется мир? Интеграл – это мостик между даром Толстого и его мечтой. Предполагается, что он может соединить мир, который писатель знает (мешанину частных явлений деталей), и мир, которого он страстно желает (идеально управляемое королевство), чтобы сплавить бесконечное разнообразие с идеальным единообразием.
Интеграл Толстого не имел успеха как наука, но, думаю, был прекрасен как метафора. В такой схеме мира люди так малы, что их можно считать бесконечно малыми, и так многочисленны, что им практически нет числа. И тем не менее добавьте каждого из этих отдельных людей, и вы получите человеческую природу. Если следовать такой логике, история не принадлежит какой-либо группе или подгруппе – ни королям, ни президентам, ни богине воинов по имени Бейонсе, ни какой-то отдельно взятой леди, – но всем отдельно взятым леди.
История – это сумма всех людей, проживших ее.
Она не поддается ни научным прогнозам, ни математическим законам. Скорее, это поэтическая правда, художественная правда – но в сумме всех бесконечно малых частей она значит ничуть не меньше, чем другие.
XVIII
Линия городского горизонта Римана
Если бы я вдруг стал профессиональным художником (что очень маловероятно), я бы нарисовал математический анализ в образе суммы Римана.