Вариант 1: справедливый, но не очень удобный.
Самый простой путь – равномерное погашение кредита с уплатой процентов на остаток задолженности – аналогичен регулярному снятию процентов с банковского вклада. Тут разницы между простыми и сложными процентами нет. В конце первого года будут возвращены:
4000 долл. = 2000 долл. (1/10 суммы) + 2000 долл. (10 % годовых), и сумма долга уменьшится до 18 000 долл. В конце второго года платим:
3800 долл. = 2000 долл. (1/10 суммы) + 1800 долл. (10 % годовых).
Сумма долга – 16 000 долл.; и т. д. Общая сумма выплат снижалась бы год от года, и в конце срока мы бы отдали всего лишь 2200 долл. (последние 2000 долл. + 200 долл. процентов).
В общем виде получаются следующие формулы:
(Для удобства считаем, что проценты платятся ежегодно, хотя чаще встречаются ежемесячные выплаты. Формула станет более громоздкой, но принципиальных отличий не будет.)
Банку этот вариант выгоден: он быстрее получает деньги назад, но вот заемщику обычно хочется сдвинуть выплаты подальше в будущее и платить равными долями (а лучше – с постепенным увеличением выплат). Как будет устроен такой расчет?
Вариант 2: простой, но грабительский.
Воспользовавшись неграмотностью заемщика, банк может предложить следующее: берем проценты за 10 лет (простые проценты – видите, мы нежадные!), прибавляем их к сумме основного долга: 20000 долл. + (0,1х20000 долл.)х10 = 40000 долл. Теперь делим все это на 10 лет – выходит по 4000 в год. Позвольте! Почему по 4000 долл. в год? По первой формуле выходило заметно меньше!
А по второму варианту мы платим проценты на всю сумму кредита в течение всего срока! В том числе и на ту часть, которую давно вернули!
Общая формула:
Это просто ростовщический подход, и в чистом виде он встречается редко, по крайней мере, у солидных банков. Но его варианты могут вам попасться и осложнить жизнь. Сравните: вы заплатите за весь период 40 000 долл., а в первом случае все расходы составят 31 000 долл.!
Вариант 3: сложный, но честный.
Чтобы понять, какие суммы выплачиваются при равных регулярных платежах, вернемся к понятию дисконтирования, ведь выплаты разделены временем, и просто складывать их – не вполне корректно. Правильнее найти их суммарную приведенную стоимость, а потом в формулу подставить сумму кредита и определить, чему равен разовый платеж. Исходный момент – выдача кредита в «нулевом году».
Пусть выплаты составляют
Разделив величину кредита (в нашем случае 20 000 долл.) на выражение (1+r)
Аннуитетный множитель зависит от процентной ставки и числа периодов; его можно найти в специальных таблицах. Для срока 10 лет и ставки 10 % он равен 6,144567, так что годовой платеж составит 20000 долл.: 6,14 = 3255 долл. В этой сумме уже есть и проценты, и постепенное погашение основного кредита. Год от года доля процентов снижается.
При третьем способе общая сумма выплат за десять лет будет больше, чем при первом: 32550 долл., а не 31000 долл. Но это справедливо: ведь при третьей схеме выплаты больше смещены к концу срока. Приведенная же стоимость всех выплат оказывается одинаковой и в первой, и в третьей схеме, – 20000 долл. (если дисконтировать по ставке 10 %). А вот при второй схеме ее величина равна 24578 долл., что, явно невыгодно для потребителя.
Вариант 4: непростой, но привлекательный.
Если третья схема типична для западного банка, то первая – для банка российского, озабоченного собственной судьбой больше, чем благом заемщика. Ведь к моменту погашения кредита может не только измениться экономическая ситуация в России, но и исчезнуть сама рыночная экономика. И банк хочет вернуть свои деньги как можно скорее.
Но заемщику это не очень-то удобно. И некоторые банки устанавливают определенную сумму регулярных отчислений в счет погашения кредита, а на оставшуюся сумму начисляют проценты. При такой схеме образуется некоторый «хвост», погашаемый в конце срока. Например, при сумме кредита в те же 20000 долл. заемщик погашает в течение 9 лет по 1500 долл. (плюс проценты на остаток), а в десятый год платит последние 6500 долл. (плюс годовые проценты по ним). Общая формула:
В этом случае общая сумма выплат будет большей, чем в первой и третьей схемах (при той же приведенной стоимости). Но взамен банк принимает на себя дополнительные риски, связанные как с невозвратом, так и с возможным ростом инфляции: «хвост», погашение которого отложено, обесценится сильнее, чем это было бы при равномерных выплатах.