Серл утверждал, что именно это и делает ИИ, когда выполняет обработку символов. Он манипулирует ими в соответствии с установленными правилами, но никогда не понимает, что эти символы и правила значат. На вопрос «какого цвета спелый банан?» ИИ, вероятно, сумеет найти ответ и «сказать»: «желтого». Кроме того, он сможет последовать еще ряду правил, чтобы сделать ответ более человечным: «Желтого, конечно. Вы думаете, что я глупый?». ИИ не знает, что означает «желтый». Он не видит связи между символом «желтый» и внешним миром, поскольку не знает, что такое внешний мир, и ИИ никогда не удастся получить какой-либо жизненный опыт. Такой ИИ не обладает интенциональностью – способностью принимать решение на основе собственного понимания. Поэтому Серл утверждал, что ИИ просто симулирует интеллект. «Формальные символьные манипуляции сами по себе не обладают интенциональностью; они совершенно бессмысленны, – писал он. – Эта интенциональность, которой, как считается, обладают компьютеры, находится исключительно в умах тех, кто эти компьютеры программирует, использует, вводит в них данные и интерпретирует данные на выходе».
Ни одна логика не является достаточно сильной, чтобы поддерживать общую конструкцию человеческого знания.
Даже если такой ИИ пройдет тест Тьюринга, это не будет иметь значения. ИИ – это механизм, разработанный, чтобы обманывать нас, подобно античным родосским автоматонам. ИИ слаб, а создание так называемого сильного ИИ, то есть обладающего реальным интеллектом, может оказаться непосильной задачей.
Логика поиска
Несмотря на критику, идеи символьной обработки привели к значительному успеху. Еще в 1955 году Ньюэлл, Саймон и Шоу разработали первую программу ИИ (даже до того, как был предложен термин «искусственный интеллект»). Они назвали ее «Логический теоретик» и на Дартмутской конференции в 1956 году с гордостью представили другим исследователям. Используя логические операции, программа могла доказывать математические формулы. Чтобы это продемонстрировать, Ньюэлл и Саймон взяли популярную книгу Альфреда Уайтхеда и Бертрана Рассела «Основания математики» и показали, что программа способна доказать многие из приведенных там формул. Более того, в некоторых случаях «Логический теоретик» предлагал более короткие и элегантные доказательства.
Аллен Ньюэлл, ученый-программист и когнитивный психолог в корпорации